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FOREWORD 

This report represents one phase of an effort directed at the use of per- 
fonnance criteria as elements in flight control system optimization studies. 
The research reported was sponsored by the Flight Control Laboratory of the 
Aeronautical Systems Division imder Project No. 8219.  It was conducted at 
Systems Technology, Inc., under Contract No. AF 33(6l6)-784l.  A companion 
report (Ref. 1 ) dealing with performance criteria for deterministic inputs 
has already been published under this contract.  The ASD project engineers 
were Mr. R. 0. Anderson and Lt. L. Schwartz of the Flight Control Laboratory. 
The principal contributors to the report are listed as authors. 

The authors wish to express their thanks to Messrs. D. T. McRuer and 
Dunstan Graham, principal investigators, who planned the general approach 
followed in both reports and contributed many details.  Thanks are also due 
to Lt. L. Schwartz for his thorough check of and valuable comments on the 
report, and to Mr. A. V. Phatak for contributing many of the calculations. 
Acknowledgment is gratefully made to Messrs. J. Taira and R. N. Nye and 
Misses N. Crawford and D. Lewis for their careful work in preparing the 
report. 



ABSTRACT 

A critical siirvey and assessment has been made of performance measures 
and associated criteria for linear constant-coefficient systems v/ith random 
inputs. The suitahility of each criterion for flight control system 
optimization using "pencil and paper" methods has been investigated by con- 
sidering its validity, selectivity, and ease of application. Simplifications 
are introduced by substituting for actual flight control systems lower order 
equivalent systems having similar dynamics, and by replacing certain random 
inputs and criteria Vifith transient analogs and "compatible" deterministic 
criteria. The latter simplification enables the calculation of random input 
performance measures to be replaced by calculations involving more easily 
visualized deterministic quantities. 

It is shown that, for stationary inputs, a wide variety of criteria 
reduce to minimum mean square error. This criterion is easy to use and 
has a compatible deterministic form, but yields lightly dainped systems and 
is unselective (i.e., the mean square error of a wide variety of off-optimum 
systems is little higher than that of the optimum). Hov/ever, no criterion 
was found that had the advantages of minimum mean square error without 
comparable or worse disadvantages. For certain nonstationary problems, 
the probabilistic square error criterion appears promising. Numerous 
improved techniques for evaluating criteria and several exanples are 
presented. It is concluded that none of the criteria that have been pro- 
posed to date are suitable as sole criteria for flight control system 
optimization. 

PUBLICATION REVIEW 

This report has been reviewed and is approved. 

FOR THE COMIANDER 

C. B. WESTBROOK  ^^ 
Chief, Aerospace Mechanics Branch 
Flight Control Laboratory 
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INTRODUCTION 

A.  ARRANGEMENT AKD CONTENTS OF THE REPORT ' 

The reader who wishes to obtain a more complete knowledge of random input 

performance criteria than can be gleaned from the Abstract and Conclusions alone^ 

but who lacks the time or inclination to read the whole report, is advised to 

read the remainder of this Introduction, the summaries on pp. 27, 28, and 65 

and all of the concluding chapter. 

This report presents the results obtained during the second phase of a general- 

ized study of dynamic performance measures for automatic flight control systems. 

Such systems are subject to both random and detemiinistic inputs, and it has been 

found convenient to present the results of the study in two parts, Ref. 1 dealing 

with deterministic inputs and the present report with random inputs.  This intro- 

ductory section defines some important terms used throughout the report, and sets 

out the viewpoint from which the various performance criteria will be assessed. 

The report consists principally of a survey and critical assessment of published 

performance criteria.  The number and diversity of the criteria examined is so 

great that it would take many pages of text to summarize the results of the study 

in such a fashion that something is said about each criterion.  Table I has, 

therefore, been prepared: it lists the criteria, states the applicable input 

conditions, and briefly summarizes the assessment of each criterion given in the 

main text of the report.  In order to keep the size of Table I within reasonable 

bounds, the criteria definitions, etc., are terse; fuller explanations will be 

found on the pages indicated in the table. 

Many criteria prove to be equivalent or closely related to other criteria. 

These relationships are compactly illustrated by "family trees" given on pp. 27, 

28, and 63. 

Some familiarity is presumed on the part of the reader with the elements of 

random process control theory.  Definitions of such standard terms as "station- 

ary" and "Gaussian" are given in Ref. 2 and elsewhere, and it is not thought 

necessary to repeat them here. It is also desirable (though not essential) that 

the reader have some acqiiaintance with Wiener and Phillips-type optimization 

because only a brief review of these well-known topics is given.  Unless otherwise 

Manuscript released by the authors April 1962 for publication as an ASD Technical 
Documentary Report. 
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stated^ it may be assumed that random inputs referred to are stationary and that 

the systems are time-invariant and that the ergodic hypothesis is applicable. 

B.  DEFINITIONS OF "PERFOEMANCE MEASUEE/' "PERFORMANCE CRITERION," 
"LOSS FUNCTION/' AND "EQUIVALENT SYSTEM" 

Performance Measure:  A quantity characterizing some aspect of dynamic per- 

formance, such as stability, response to desired inputs, response to unwanted 

inputs, accuracy, etc. 

Performance Criterion:  A standard or reference value of some performance 

measure.  It provides a basis for a rule or test by which some aspect of dynamic 

performance is evaluated in forming a judgment of system quality. 

Loss Function:  A fiinction only of the controlled quantity, c(t), or of the 

instantaneous error, e{t),  between the desired and actual values of c(t).  Its 

magnitude at any given €(t) |or c(t)| indicates the importance attached to that 

e(t) I or c(t)| .  For example, in Fig. 1 the loss function is appropriate to a 

I — 

Loss   Function, L 

LU) 

Figure 1 .  Typical Loss Function 

situation where all errors greater than IGQI are of equal importance, while errors 

of smaller magnitude are of zero importance.  Most of the performance measures 

discussed in this report are time-averaged loss functions of error, L(£) (for 

example, e^). 

Equivalent System: A simpler system which has closed-loop dynamic character- 

istics approximately equivalent to those of some actual system.  It normally has a 

transfer fimction of first to fourth order plus, if necessary, time delay terms to 

represent high-frequency leads and lags. 

The general procedure by which equivalent systems are derived is most clearly 

illustrated by an example taken from Ref. 1 and repeated here for ease of reference. 



TABLE  I 

SUMMARY OF RANDOM INPUT PERFORMANCE MEASURES 
For Linear Constant-Coefficient Systems 

MEASURE 
SEE 

PAGE 

Mean  square  error 

:  _     lim    J_   ("^ 
' T^co  2T J_^ 

e^(t)dt 

119 

Mean function of error 

rciy. lim j_ r^. 
T^co 2TJ_^- f(e)iit 

57 

TYPE OF SYSTEM INPUTS 

Stationary random desired and unwanted 
signals (Ref. 3 and K). 

55 

Stationary random desired signal plus 
constraints on system. 

Command signal composed of a polynomial 
time function of order n, plus a sta- 
tionary random signal plus an unwanted 
Input which is a stationary random signal. 

Stationary Gaussian random desired and 
unwanted signals. 

ASSOCIATED CRITERION 

Minimum value. System form may 
be fixed (Phillips-type optimiz- 
ation) or free (Wiener optimiza- 
tion) . For Wiener optimization^ 
system form is Implicitly deter- 
mined by form of input and 
desired response spectra. 

Example: 
Minimum e^ while 

T 
li"' 1- {torque)^dt ^ const. 

T  03 2T _^^   ^     ' 

(Ref. 9 and lO) or minimuir 
weighted plant input power with 
e2 < constant (Ref. 10 and 11) 
or other system constraints. 

Minimum e^ [first n moments of 

-^"■' E(B)/R(S) specii"le'\] 

(Ref. 7 and 12). 

Minimum value.  System for 
(i) free or (ii) fixed. 

Stationary random desired and unwanted 
signals. 

Stationary Gaussian random desired and 
unwanted signals. 

Gaussian random desired (Ref. 14) and 
unwanted signals plus additional signal 

terms of the form ^aR^k^^)* 

fi-(t)'B are known deterministic 
functions 

ai,' s are random variables with a 
known Gaussian joint proba- 
bility density function 

Minimum value. System form 
free. 

CRITERION ASSESSMENT 

e2 tends to be imselective 
and the optimum system not 
well damped.  If input 
signals are stationary and 
GausBlanj the Wiener optimum 
linear system is the absolute 
optimum of all filters, linear 
or nonlinear. 

No general assessment due to 
wide variety of possible con- 
straints. 

Even simple problems reijuire 
considerable computational 
effort. 

Yields minimum e^ system 
[(i) Wiener or (li) Phillips] 

Minimum value. System form 
(i) free or (ll) fixed. 

Minimum value.  System form 
free. 

For stationary Gaussian 
processes, yields the 
Wiener system. 
If signals are nonstation- 
ary Gaussian, the optimum 
system is a time-varying 
linear system which also 
minimizes e^. 

For non-Gaussian (station- 
ary or nonstationary) 
signals, the general 
solution is not known. 

Yields minimum e^ system 
[(l) Wiener or (li) Phillips] 

The absolute optimum system 
is the minimum e^ linear 
(possibly time-varying) system 
plus a bias term on the out' 
put. 

Exceptionally well developed theory and application (Ref. 5, 5j 
6,7, and 8).  Primary difficulty in flight control application 
is to find adequate expressions lor desired and unwanted signals. 
e2 can be expressed analytically in terms of system and signal 
parameters; hence, the effect of parameter variations on e2 can be 
assessed in a straightforward manner.  In practice, high-order 
systems yield complicated expressions, and trial and error is used 
to supplement the analytical treatment (Ref. 6) • 

Well-developed theory and application using Lagrange multiplier 
techniques (Ref. 6, 9,   10, and 11). 

Well-developed theory combining error coefficients with random 
input system theory (Ref. 7 and 12). 

need not be an Integer. 
■ • ur Each n must be positive, but 

Sherman-s (Ref. 15) loss function, f(e), is defined as 

f(0) = 0 null property 

f(e) = f(-e)        symmetry property 

f(ei) ^ ^(^2) >    0  monotonic property 

^1 eg > 0 

The determination of the optimum system also depends on some prop- 
erties of the input distribution {see text). 

Chang's (Ref. 10 ) loss function Is the same as Sheman's (Ref. 15) 
above, although it may be asymmetric if in addition e = 0. 
Brown (Ref. I5) also considered an asymmetric loss function. 

The loss function is an arbitrary function of the error.  If it is 
the same as Sherman's (Ref. 15) loss function (see above), then 
the output bias term is zero. 



TABLE I (Continued) 

SUMMARY OF RAMDOM INPUT PERFORMAMCE MEASURES 
For Linear Constant-Coefficient Systems 

MEASURE SEE 

PAGE TYPE OF SYSTEM IHPUTS ASSOCIATED CRITERION CRITERION ASSESSMENT REMARKS 

Kaufman'n  performance 
measure (Ref. 1 6) 

lim J_ f y- ^ ^Sn^t 

33 Stationary random desired and unwanted 
signals. 

Miniramn value (Ref. l6). 
System order specified. 

Yields the same system as 7^ 
for Gaussian inputs.  Very 
few results for non-Gaussian 
inputs. 

Original reason for this criterion was to handle non-Gaussinn 
signals.  Previous work (Ref. 16) considered only linear systems 
¥ith inputs having probability density functions symmetric about 
the mean.  In some cases, Kaufman's performance measure is mini- 
mized by minimizing e2. 

Average number of 
exceedances per second 
of some specified 
level, L 

h] Stationary Gaussian random inputs 
(Ref. 17). 

Minimum value of output or error 
exceedances.  System order 
specified. 

Examples studied to date, for 
both output and error exceed- 
ances, show that the criteria 
tend to select very heavily 
damped systems. 

Originally proposed as a fatigue measure (output exceedances). 

1 
/ uf-^(ai)doi 

1/2 

' 
j      $(a))dcu 

p = Prob J1e1 < L} 

L is a specified toler- 
ance 

'A Stationary Gaussian random inputs plus 
deterministic component. 

Maximum value (Ref. 6 , lQ,  and 
19).  System order specified 
(Kef, 18). 

Not generally useful as form- 
ulated in Ref. l8. 

Ref. 18 considered the case when the error has two components such 
that E[e^J.^ = e^Q + o^ where ego i^ the systematic error at time 

tg and o2 the variance of the stationary random component of the 
error.  Then, if 

.       "                     "     - 

or GgQ » Oj and e^Q = L 

it is claimed that maximizing p is the same as minimizing E[E2]. 
This is strictly true only if EgQ is independent of the free 
parameters.  For this case, minimizing o^ maximizes p independently 
of the above conditions.  If e^Q  is not independent of the free 
parameters, then there is no guarantee that the above conditions 
hold as parameters are varied. 



TABLE I  (Continued) 

SUMMARY OF RAHDOM IHPUT PERFORMANCE MEASURES 
For Linear Constant-Coefficient Systems 

SEE 
PAGE 

TYPE OF SYSTEM IMPUTS ASSOCIATED  CRITERION CRITERION ASSESSMENT REMARKS 

Time-weighted mean 
square error  (Ref.  20) 

Stationary random inputs- Minimum value.     yystera order 
free  (Ref.  20)   or specified. 

lim _1_ f''^ , 
T-co 2T J_^"^ 

Yields the same optimiuii system 
as the "e2 (Wiener or Phillips) 
system. 

For w(t) statistically independent of e{t) (either deterministic 
or nondeterministic) ,    performance measure is shown to be equal to 
(e2)(w). Ref. 20 considers the case of deterministic w(t) only. 

w(t)e2(t)dt 

w(t) > 0 for -co < t <co 

Glover's amplitude- 
weighted error   (Ref.  21 ) 

75 Stationary random  inputs. Minimum value.     System order 
free  (Ref. 21 )  or specified. 

lim J_   \ 
T^co 2T J_^"' 

Tends to be very unselective 
when system order is speci- 
fied. 

(t)e2(t)dt 

where w(t) 

For w(t) not statistically independent of 6(t) and for Gaussian 
processes, the optimum system is the Wiener system multiplied by a 
constant (which is a function of the input, and system parameters) 
(Ref. 21 }.  Optimization with transfer functions of specified order 
(Phillips method) yields systems not related to the Phillips system 
in any simple manner. 

fg(t) + 6^' 

a nondeterministic func- 
tion, 

f|3(t) is desired signal, 

6^ indicates the lowest 
accuracy of interest. 

End Sigma Combined stationary or nonstationary 
random and deterministic inputs. 

Minimum value (Ref. 22)and 25). 

■/: 

p(t)F)e(t), t, vi , V2> 

Valuable for nonstationary 
problems where precise formu- 
lation of p(t) is possible. 
For stationary situations, 
reduces to simpler criteria, 
or is unsuitable. 

Proposed as an all-encompassing criterion (Ref. 22).  The integrand 
is a function of various system parameters, v\ , vg, V5, ••■ v^, and 
p(t), the probability distribution of all times when the system 
output is utilized.  Published examples all use simplified 
criterion given below. 

Probabilistic square 
error 

66 Combined stationary or nonstationary 
random and deterministic inputs. 

f 
Minimum value.  Maximum system 
order specified either 
explicitly or implicitly 

Special form of "end sigma" 
criterion.  Assessment as 
above. 

Complete digital computer evaluation procedures using Legendre 
polynomials are available (Ref. 24, 25, 26, and 27). Analytic 
procedures discussed in this report. 

p(t)€2(t)dt 



TABIE I (Concluded) 

SUMMARY OF RANDOM INPUT PERFORMAMCE MEASURES 
For Linear Constant-Coefficient Systems 

MEASURE SEE 
PAGE TYPE OF SYSTEM INPUTS ASSOCIATED CRITERION CRITERION ASSESSMENT REMARKS 

Generalized error 
function (Ref. 39, 88) 

87 

t - T 

Stationary random signal and noise. 

- c(t)]2dt 

Minimum value.  System form 
free or specified. 

When system order Is free, 
yields Wiener system for the 
appropriate T (prediction or 
interpolation). When the 
system order IB specified 
(Phillips system), measure is 
difficult to minimize analyt- 
ically since the expressions 
for G.E.F. contain exponential 
terms. 

This measure has a compatible form for deterministic inputs 

E(T) = /  [s(t - T) - c(t)j2dt 
Jo 

In Ref. 28, E(T) is called ISDE (integral square delayed error) 
when there is zero noise. 

Frequency-weighted mean 
square error (Ref. 32) 

1 C^ 
J-co 

105 Stationary random signal and noise. Minimum value.  System form 
free or specified. 

Free order optimuin systems are 
related to Wiener system. 
Useful criterion when W(a)) 
can be specified so that it 
reflects the physical require- 
ments of the system (see 
below). 

W(ai) should be largest for frequency regions where error power is 
undesirable.  W(tD) must not tend to zero as m  tends toward 
infinity if system order is free. 

Mean square error deriv- 
atives (Ref. 55) 

lim  1 1  V   d"e(t) 

112 

dt 

Stationary random signal and noise. Minimum value.  System order 
free or specified. 

Simple forms of this criterion 
are studied in Chapter V, and 
it is shown that they fail to 
achieve good selectivity. 

This measure is a form of the frequency-weighted mean square error 
measure [w(a)) is then a numerator polynomial in u^ . 



Consider a pitch control system for the fighter airplane detailed in Appendix C 

of Ref. 1 .  The open-loop transfer function for the pitch loop is 

k 
G(s) = 

MT:W2^'){O:^8-) 

_(0.0630)' 

2(0.071^) ^ , 
O.O65O  ^ "" ][ .(^.27)' 2(0.493) 

^  r 7^— 4.27 
s + 1 

Airplane Transfer Function 

m ̂ 1(2^ - ^) 

(1) 

/^\  + 2(0-7) 3 ^ T 
boj 50    ^ ^ ^ 

Controller Transfer 
Function 

The Bode diagram for G(jaD) is shown in Fig. 2.  The closed-loop system has three 

regions of interest defined by 

(a) |G(JCD)| » ^,  over which 

(b) |G(ja})| « ^,  over which 

(c) |G(jm)|  = 1 

MM. 
1 + G(jaD) 

G(jai) 
1 + G(jaD) 

|G(jm) 

The form of the closed-loop transfer function, in this last 
l_G(jm) 
il + G(JCD). 

region defines the dominant modes" of the closed-loop-system dynamic response 

for impulse and step inputs.  In most cases G(ja))/[l + G(JCL>)] in the region where 

|G(J(D)| is of the order of unity can be approximated by a first-, second-, or 

third-order system, the modes of which will determine the major features of the 

response.  The open-loop amplitude asymptotes of an appropriate equivalent system 

for this example are shown in Fig. 2. 



Equivalent-system asymptote 
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Applying this approximation to the present example yields the closed-loop 

(JCD) Bode diagram of Fig. 5.  The Bode diagram for the exact closed-loop system 

is also shown for comparative purposes.  It will be observed that the error of 

the approximation is small.  If greater accuracy is required^ more complicated 

open-loop equivalent systems can be produced by retaining more of the terms in 

the complete open-loop transfer function. 

In this example the crossover frequency, ca^,  is of the order of the servo 

break frequency (50 rad/sec).  Usually this frequency will be »ca^;  the effect 

of the associated high-frequency leads and lags can then be approximated by 

replacing them in either the open- or closed-loop transfer functions by a pure 

time delay term, e"""^^. A satisfactory approximation for the time delay is 

'^  = -(^leads - %aEs) (^ef. l). leaas   lags ^^^.^  frequency 

In general, airplane transfer function break frequencies and time constants 

are spaced so that G(JCD) in the region of crossover can be satisfactorily approx- 

imated by a system of not more than fourth order. 

The artifice of replacing the actual flight control system by the equivalent 

system is extremely valuable in simplifying analysis and optimization procedures. 

Such simplification is usually necessary to prevent the physical realities being 

submerged by a flood of mathematics. 

C.  ASSESSMEMT OF PEKFOEMANCE CRITERIA 

The basic requirements that a criterion must satisfy if it is to be of 

practical use are defined in Ref. ^  as 

1 • validity 

2.  selectivity 

5.  ease of application 

These will now be reviewed, and the concept of "compatibility" introduced. As 

will be shown, this concept is useful in determining the validity of random input 

performance criteria for flight control systems. 

Validity 

Validity means that the criterion yields systems that have desirable perform- 

ance characteristics for the input environment of interest. Desirable character- 

istics would include adequate phase margin, realizable bandwidth, and, for a 
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transient input environment, good step response. Although no simple form of 

step response can be explicitly defined as a universally applicable optimum, it 

is generally accepted that fast rise time, small overshoot, and low settling 

time are desirable.  (For full discussion of these aspects of system performance 

see Ref. 1 .) A second-order unit numerator system having a damping ratio, ^, of 

about 0.7 satisfies these requirements quite well. 

At first sight it might seem that an assessment of system merit based on 

step (or other transient) response has little relevance to the value of that 

system for random inputs. However, flight control systems must be satisfactory 

for a wide range of inputs, some (such as gusts) essentially of a random charac- 

ter, others (such as engine failures, pilot commands) steplike, and primarily 

deterministic. A random input performance criterion that yields a system having 

a very lightly damped step response cannot, therefore, be regarded as valid for 

flight control systems.  Ideally, a random input performance criterion applied 

to a second-order unit numerator system should yield a damping ratio of approxi- 

mately 0.7«  This ideal provides a yardstick by which most of the criteria 

discussed in this report will be assessed. Although good step response is a 

necessary, rather than sufficient, condition for validity, criteria that fall 

far short of this standard can be rejected without further study, particularly 

since many equivalent flight control systems are only of second order. 

To formalize the assessment of system merit on the basis of response to both 

deterministic and random inputs, the concept of "compatibility" will now be 

introduced.  Consider a deterministic input, r[)(t), and a stationary random input, 

rj^(t).  Let these Inputs be applied to Identical linear constant-coefficient 

systems having the transfer function H(s), and let Mj^ and Mp be appropriate 

random and deterministic input performance measures, respectively.  If, for any 

specified rj^(t), an r-Q(t) can be foxind such that MQ = M^,   for all H(s), then Mj) 

and M[^ are said to be compatible and rT-,(t) is called the transient analog of 

rj^(t).  (For compatibility only the numerical values of M[) and M^  need be equal; 

their dimensions (units) may differ.) 

A brief example of a compatible criteria is given on p. 15' A more detailed 

discussion of compatible criteria and transient analogs for both signal and noise 

is given in Chapter IV.  The use of transient analog inputs and compatible per- 

formance measures enables analysis of systems with random input quantities to be 

replaced by analysis with deterministic input quantities (such as steps and ramps). 

11 



which are much more easily visioalized.  Compatibility is thus a desirable 

quantity.  It does not justify criteria; the prime requirement is still validity. 

However, the compatibility concept could be used to guide the search for a valid 

random input performance criterion.  Instead of trying various random criteria 

and then checking their (possibly unsatisfactory) validity, one could adopt the 

following direct procedure: 

1. find a valid deterministic criterion 

2. find its compatible random form 

Neither of these tasks may be easy. Nevertheless, it is hoped that this system- 

atic approach will be more successfiil than the usual procedure 'of suggesting 

random input criteria without consideration of the deterministic response char- 

acteristics of the resulting system. 

Some physical significance can be attached to compatibility.  It can be 

argued that the separation of flight control system inputs into "random" and 

"deterministic" categories is too arbitrary. For example, pilot inputs can 

often be well approximated by step movements of the controls, the amplitude and 

timing of these steps being random.  Suppose that in such an input the delay 

between each successive step greatly exceeds the system settling time so that 

the system error essentially settles to zero between successive steps.  This 

input could be thoiight of 

1. as a noise-free stationary random input 

2. as a stationary sequence of steps commencing 
at time tQ and continuing to t = co. 

One method of optimizing the system would be to apply some standard deterministic 

input performance criterion to each member of the sequence of step responses.  If 

this deterministic criterion is valid (as it should be), the optimized system 

step response would resemble the step response of a second-order unit numerator 

system with a damping ratio of about 0.7- 

Finding a valid compatible random criterion is much more difficult than it 

may appear at first glance. Many deterministic performance criteria do not have 

compatible forms, and some that are compatible fall short of the ideal as regards 

validity.  This last point will now be demonstrated by considering the e^ and lE"^ 

performance measures. 

12 



e2 1'   1  f 
""""^ -— I e^dt        for stationary random inputs 

T-^oo 2T J_^ 

IE  =  I  e^dt for deterministic inputs coramencing at t = 0 

It will now be shown that while these measures are compatible, their validity- 

is less than ideal.  In order to emphasize the physical significance of compati- 

bility, only the special class of random inputs described on p. 12 will be con- 

sidered.  (A general proof of the compatibility of e^ and IE for both correlated 

and \incorrelated signal and noise inputs is given in Chapter IV.) 

Example of Compatible Criteria.  It is clear that the minimum lE^ criterion 

cannot be directly applied to stationary random quantities because e^  fluctuates 

about a constant level and the integral would fail to converge. 

Consider the special input described on p. 12, consisting of steps of random 

amplitude occurring at random intervals substantially exceeding the system 

settling time.  Evaluating lE^ for each of the step responses yields 

P  [e(t)]2dt + r''^[e(t)]2dt + ... + r''^ [e(t)] ^dt 

where tQ is the time of application of the 
first step 

t-]  is the time of application of the 
second step 

t^_1  is the time of application of the 
nth step 

*n ~ ^n-1 "*" ^^ arbitrary finite time 
much greater than the system 
settling time 

If the input is stationary, this sum becomes the sum of an infinite number of 

integrals, and hence fails to be of use in practical calculations.  In order to 

obtain a finite measure, the time average value of these integrals wi3J. be taken, 

and the performance measure modified to 
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Coalescing the limits of integration (see p. 101 of Ref. 6 and p. 1 36 of 

Ref. 8 for formal justification of this step), the criterion becomes 

1    pn 

^n - *0 Jto 
minimum '■—■— I   e^jj-f; 

For a stationary situation, tQ —^ -00 and t^ —^ +00, and the criterion can 

be expressed in the familiar form 

•+T   
minimum J~'^^    -1-  I   e2(3_-t = minimimi e^ (2) 

lim _!_ f-^ 
T-^00 2T J_^ 

Having related e2 and IE by elementary physical considerations, one would expect 

that both the minimum e'-  and the minimum IE criteria would be compatible.  This 

can be quickly proved for a unit numerator second-order system (although the proof 

can be generalized for any system).  The required system transfer functions are, 

for unity feedback, 

^(^\     _ C(s)  _      1       E(s)      s2 + 2(;s , . 

As has been shown in Ref. 1 , for a unit step input. 

Xoo      p 1 
[e(t)] dt = ^ + ^ (M 

lE^ is minimized by ^ =0.5. As shown on p. 1^1 of Ref. 8, the special random 

input of p. 12 could be described in conventional statistical terms by a power 

spectrum of the form 

^rr^'")  = a^-i^O ~^—2 ^5) XX       a—u a^ + of 

ll^ 



E-valuating e2 with the above input applied to the H(S) of Eq 5 yields 

^ •'-joo 

llm ^_ rJ°° ["    (s2 + 2t;s)     11"    (s2 - 2^s)      "I ^^ 

a—0 2:tj J_.^ L(g2 ^2t;,s + ^){a +  s)J[(s2 - 2^s + l)(a - s)J 

This can he eval\jated using the tabula,ted integral forms of Appendix A, Ref. 6, 

whence 

^ = ^ + J^ = IE2     , (7) 

Thus the e2 and lE^ criteria are compatible. A general proof (applicable to all 

stationary random inputs) showing that these performance measures are compatible 

for any linear system is given in Chapter IV. The value of this compatibility 

is rather diminished by the fact that minimum lE^ is generally regarded as only 

moderately valid because the ^ = 0-5 step response has a relatively high over- 

shoot and a long settling time compared to, say, the optimum ITAE second-carder 

unit numerator system (^ = O.76). 

It is interesting to examine the difficulties in constructing a compatible 

criterion for ITAE. With the same input as above, applying the ITAE criterion 

to each of the step responses yields the criterion 

/•t-j /•t2 r'^n 
minimum I   t|e|dt + minimum I   t|e|dt + ••• + minimum j   t|e(dt 

•'to -^h •'tn.i 

Taking the time average value of these integrals, the criterion may be modified 

to 

minimum —] I   t|e|dt + f   tjeldt + ••• + j ^ tleldtV 

There appears to be no standard random fonn to which this expression can be con- 

densed, i.e., no random criterion compatible with ITAE has been found. Of course. 
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this is not a proof that no compatible criterion exists; if one could be found, 

it would be extremely valuable.  Further discussion of compatible criteria is 

given in Chapter IV. 

Other Requirements for Performance Criteria 

"Validity" has been discussed at some length; the remaining requirements of 

"selectivity" and "ease of application" can be dealt with more briefly. 

"Selectivity" implies sharp differentiation between "good" systems and those 

which are merely "acceptable." Of the performance measures examined in Ref. 1, 

ITAE is particularly satisfactory in this respect.  For a step input to a second- 

order \init numerator system, the minimim ITAE is 1 .96 at ^ = 0.76, rising to 

2.25 at ^ = 0.61 and ^ = O.9O.  Since the ITAE criterion maintains good selec- 

tivity for high-order systems and has been favorably received in almost all 

relevant references (e.g., Ref. 51 and 35), it will be taken as setting an 

acceptable standard for selectivity. 

"Ease of application" demands that the criterion should be readily expres- 

sible in terms of system parameters, and that convenient procedures for its 

evaluation should exist. 
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CHAPTER I 

CRITERIA DEFIKED SOLELY AS FUNCTIONS OF ERROR 

This chapter is concerned with performance measures expressible in the form 

f(e), the sole independent variable being e, the error between the actual system 

output and a specified desired output.  The majority of the criteria that have 

been proposed for linear constant-coefficient systems with random inputs are of 

this form.  In particular, the criterion of minimum mean square error has been 

extensively studied for stationary random inputs.  Outstanding contributions to 

the study of this criterion have been made by Wiener (Ref. k)  and Phillips 

(Ref. 5), and throvighout this report reference will frequently be made to Wiener 

optimization and Phillips-type optimization.  Therefore, for ease of reference, 

the Wiener and Phillips-type optimization procedures are briefly summarized below. 

The essential difference between the procedures is that in Phillips-type optimiza- 

tion the form of the system (the order of the transfer fimction numerator and 

denominator) is prescribed by the analyst, whereas the form of the Wiener system 

depends only upon the spectra describing the input environment and desired output. 

A.  BRIEF SUMMARY OF WIEEER OPTIMIZATION . 

Wiener investigated the problem of recovering a stationary random signal, f(t), 

from an input comprised of signal plus noise, n(t), when the desired output, c^(t), 

is equal to the signal advanced or retarded by r]  sec.  The cases where T) > 0, 

T] = 0, and T] < 0 are referred to as prediction, smoothing, and interpolation 

(or lagging), respectively.  No restrictions are imposed other than that the 

optimum system should be linear and physicalOy realizable, i.e., no output can 

arise without a prior input.  A block diagram representation of this problem is 

given in Fig. k-.     Components are indicated by their transfer functions, for brevity. 

f(t) 
■^rm 

n(t) 

"+ r(t) 
•-  H(s) 

.*7S 

€(t) 

Figure k . Block Diagram for Wiener Optimization 
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H(S) is the ti^nsfer function of the system under consideration, and Its output, 

c(t), is denoted by Cy(t) when H(S) becomes Hy(s), the Wiener (optimum linear) 

system.  Using the ergodic hypothesis, the time average square error equals the - 

ensemble average square error 

^ = E(C(i - c)2 (8) 

where e(t) = C(j(t) - c(t), the difference between desired 
and actual outputs, and E denotes the ensemble average 

Let Hy(s) = >^L'^y(t)j denote the physically realizable linear constant coefficient 

system which minimizes ^.     Hy(s) is found by considering any other realizable 

linear system, h^(t) + ag(t); and imposing the condition that for all a (a param- 

eter) and any g(t), this system yields a larger e^ than that due to hy(t); i.e., 

E(C(i - cy - acg)2 - E(c^ - Cy)^ > 0 (9) 

where Cg(t) is the additional output due to g(t), and 
Cy(t) is the output of the Wiener system 

Expanding Eq 9 gives 

E(c^ - Cy)^ - 2aE[(C(i - c^)cg] + a2E(c|) - Y.{c^ -  c^)^ > 0       (10) 

-2aEr(C(i - cy)cg| + a2E(c|)  > 0 (n) 

Because the second term is always positive, the inequality can hold for all 

a only if ._..,. 

ERcd - c^)cg]  = 0 (12) 
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This is the necessary and sufficient condition for c^ to be the output of the 

linear system that yields minimum e^. Using the convolution relationship for 

physically realizable linear systems^ 

Cg(t)   =   I    g(T)r(t - T)dT (15) 
Jo 

Equation 12 can be written 

aE I  g(T)r(t - T) |c^(t) - c^(t)\ dr = 0 (1^) 

Interchanging integrations. 

.J["g(x) {R,e^(T) - R^,^(x)| dT  = 0 (15) 

where the crosscorrelation is defined as 

,.  '   r+T 
^b(^)  = T^"^ 2T I   a(t)b(t + T)dt = E[a(t)b(t + x)] 

where a and b are general stationary random signals 

■ ■ - i 

Eqiiation 15 will be true for all g(T), T > 0, and all a, only if the expression 

in braces is equal to zero, i.e.. 

Rrc^(T)  = Rrc^(T)     T>0 (i6) 

Usijally the desired output is either the signal or a prediction of this signal 

T\  sec in the future: 
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,(t)   =  f(t + T)) (17) 

= j[\(u) Because c^(t) = |  hjj(u)r(t - u)du, Eq 16 becomes the familiar Wiener-Hopf inte- 

gral equation: 

Rrf(-r + T))  =  I  h^(u)R^^(T - u)du    T > 0 (18) 
'0 

The solution of Eq 18 yields the optimum linear system.  Alternatively, 

Eq l8 can be expressed in the frequency domain as (Ref. 10, p. 92) 

%(j"^)  = 
*.r(j^) 

eJ'^<I>^f(ja3) 

*^^(j^) 
(19) 

-"+ 

where <I> „(JCD)  = the cross-spectrum between the desired 
output and the sum of signal and noise 

* rr 
(joo)  = a factor of * (a>) containing all the 

left-half-s-plane poles and zeros of $ „(flD) 

*.-^('^)  = *^^(j^)*^^(j'^) (the input power spectrum) 

L J     means expand in partial fractions,  and 
then keep only terms with left-half-plane 
poles 

Equations 1 8 and 1 9 constitute the principal results of the Wiener optimization 

theory. 

B.  BRIEF SUMVIARY OF PHILLIPS-TYPE OPTIMIZATION 

The method of optimization developed by Phillips differs from that described 

above in that the form of Hp(s), the Phillips optimum system transfer fijnction, 

is prescribed.  The error power spectrum is calculated for general values of the 

numerator and denominator coefficients of Hp(s).  The mean square error is then 

obtainable from the following relationship: 
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S    =    ±   \       *^Ja.)d^ (20) 
" J-oo 

The evaluation of this integral is facilitated by the use of integral tables 

given by Phillips (Ref. 3 and in a more convenient form in Ref. ^,   6, and 36). 

The mean square error is thus obtained in literal terms involving the coefficients 

of Hn(s), and the resulting expression is then minimized with respect to these 

coefficients. 

To illustrate a typical Phillips-type optimization, a second-order zero- 

position-error system will be considered; its transfer function is 

H(s) 
s^ + 2^s + 1 

The signal power spectrum is <f)f.f.(s) = —5 5, the noise is zero, and the desired 
-s^ + a^ 

output is equal to the signal.  The resulting mean square error has been graphed 

in Fig. 5. For a specified value of a,  the Phillips filter has the ^ indicated 

by the dotted line.  In this example, the mean sqiiare error criterion is unselec- 

tive in that the off-optimum mean square error is very little greater than the 

minimum.  However, discussion of the merit of e^ as a performance criterion 

relative to other criteria will be delayed until Chapter III, after demonstrating 

that many apparent alternative criteria are in fact equivalent to minimum mean 

square error. 

C.  DETERMINATION OF THE MINIMUM MEAN SQUARE ERROR SYSTEM 
WITHOUT RESTRICTION OF LINEARITY OR CONSTANCY OF COEFFICIENTS 

When the signal and noise are stationary random processes, the Wiener system, 

by definition, yields a lower mean square error than any other physically realiz- 

able linear constant-coefficient system.  It Is logical to inquire whether a 

time-varying and/or nonlinear physically realizable system could yield a smaller 

mean square error in such an input environment.  Strictly, the answer to this 

question lies beyond the scope of this report, which is primarily concerned with 

time-invariant linear systems; nonlinear systems are usually studied separately 

because their analysis demands specialized techniques, and because the generality 

21 



1^ 

I.I 

1.0 

0.9 

0.8 

• 0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.4 

S*^ +2Cs + 1    '' 0*^ + 0)2 

2_ H-4g^ + 2Ca 

I 

0.6 0,8 1.0 

C 
1.2 1.4 1.8 

Figure 5. Effect of Input Break Frequency on Mean Square Error of a Second-Order Unit Numerator System 



of the results obtained is limited.  (For example, the response of a nonlinear 

system to a deterministic input may change radically vith a small change in the 

input amplitude.)  However, for stationary random inputs, it is sometimes 

possible to obtain quite useful and general results without imposing the restric- 

tion of linearity.  In particular, it can be shown that with a stationary random 

Gaussian input environment, the Wiener system yields a lower mean square error 

than any other physically realizable system, linear or nonlinear, with or without 

time-varying coefficients. 

In order to demonstrate this result, a brief departure from purely linear 

analysis is necessary.  This is amply justified by the importance of the result 

obtained. 

Formulation of the Ensemble Mean Square Error 

It is necessary first to consider a general (i.e., not necessarily Gaussian) 

input environment, and to derive the formula for the minimum mean square error 

system.  Sherman (Ref. 1 5) quoted this formula, but did not prove it.  In fact, 

no proof was foimd in any of the references consulted by the authors of this 

report. The derivation given below was obtained by utilizing some resiilts given 

by Cramer (Ref. 37). 

Consider the system j.llustrated in Fig. k  (p. 17) where now the sole restric- 

tion upon the output, c, is that it be the output of a physically realizable 

system; i.e., c depends only upon the past and present values of r.  The system 

is permitted to be linear or nonlinear and time-varying or time-invariant. The 

ensemble mean square error is • 

/oo /"oo 
I   (c^ - c)2p(cd, c)dc4dc (21) 

■CDJ-CO 

where p(C(3^, c) is the joint proba- 
bility density function of c^  and c 

So that Cramer's results can be used without modification, it will be assumed 

that the system operates only upon sampled values of r(t) available only at a 

finite number, n, of sampling instants prior to t, the present time. For this 

condition, c(t) will be some function, \|i, of the present and past input samples; 

i.e., 
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c(t)  = ^(VQ,   V^,   r^,   "-,   rn)     ■, ,; (22) 

where  TQ = r(t) 

r-,  = r(t - T) 

r2 = r(t - 2T) 

T is the sampling period 

Making use of Eq 22 the ensemble mean square error, Eq 21 ,   can be written as 

2    /"oo foo       2 
E(c^ - c)  =  I ... I  (c(i - c) p(c^i, rg, r^ ••• rn)dC(idrodrT ••• dr^  (23) 

J-ooJ-co 

where p(c^, rg, r-^ ,   ••',   r^)   is the joint probability- 
density fiHiction of c^  and all the past sampled values 
of r that contribute to c 

The joint probability density function p(C(3^, TQ,   V-^ ,   '"',   r^) can be rewritten as 

P(cd^ r)  = p(C(i/r)p(r) (24) 

where  "r" denotes the sequence of past sampled input 
values, TQ,   r^ ,   TQ,   •••,   r^ 

p(C(i/?') is the conditional probability density 
fimction defined 
the probability density function of c^,  assum- 
ing that the particular input sequence '9' has 
occurred. 

Inserting Eq 2k  into Eq 23, and rearranging terms, yields 

/•GO    /-co /"oo 
E(cd - c)2 =  I   ... j  drodr^ ••• dr^pCl^) I  (c^ - c) p(c^/r)dc<i  (25) 

J-oo    J-co J-00 

2k 



Minimization of the Ensemble Mean Square Error 
■ ■ •■■} 

o 
The minimization of E{C^ -  c)  follows the procedure in Ref. 37, p. 271-272. 

The  fo.lJowing points about Eq 25 should be noted: 

1 .  c occurs only in the inner integral over c,^ 

2. because c is a function of r" alone, it is constant when 
integrating over c^ 

3. the integiB-l over C(j is the second moment of c^ taken 
about c,  given that a general r" has occurred. 

Equation 25 will be minimized if c is chosen such that the integral over c^^^ 

is minimized at each value of T that can possibly arise from the given signal 

and noise.  The well-known fact that the second moment is minimized when taken 

about the mean implies that c must be equal to the conditional mean of c^ 

given ?■, i. e. j ' 

/CO 

CdP(cd/r)cic^ (26) 
00 

This is the general formula for the absolute optimum mean square error system. 

Interpretation of Eq 26 for General Inputs.  The meaning of Eq 26 can best 

be understood by considering the case where c^  equals the signal; as usual, 

r is the sum of signal and noise.  The present and past sampled values of r, 

relative to the present time, t,  are available as inputs to the absolute optimum 

system.  From these observations on the sum of signal and noise, the best esti- 

mate of the signal alone is the ensemble average value of the signal at time, t, 

utilizing the actual sequence, r, that has occurred.  The formula for the absolute 

optimum system (Eq 26) is intuitively satisfying because it makes use of all the 

information that observations on the sum of signal and noise have conveyed about 

the signal alone; i.e., p(c^/r).  Unfortunately, the determination of the condi- 

tional mean is in general very difficult if the signals involved are non-Gaussian. 

Interpretation of Eq 26 for Gaussian Signal and Noise.  When the signal and 

noise are Gaussian, both c^ and r are Gaussian.  In particular, the sequence 

^ = ^0^ ^1 •■• ^n (defined in Eq 2k)  has a multivariate Gaussian joint probability 

fimction.  Cramer (Ref. 37, p. 31 i)-, 315) has shown that conditional density 
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functions of Gaussian signals are Gaussian.  In addition^ he has shown that the 

conditional mean is a linear function of the given variables r" = TQ,   T-^ ,   ••• r^^. 

It is now permissible to allow n^ the number of sampled values^ to become arbi- 

trarily large and the sampling period to become as small as may be desired. 

Neither of these limiting processes will affect the linearity of the absolute 

optimum system.  Therefore, the absolute optimum system is linear, and if the 

Gaussian signal and noise are also stationary then, by definition, this system 

must be the Wiener system. 

D. SUMMARY OF RESULTS ON MEAN SQUARE ERROR CRITERIA 

The results obtained on the Wiener, Phillips, and absolute minimum mean square 

error systems are summarized on the "family tree" of Fig. 6, which shows how these 

systems are related.  It will be demonstrated later in this report that many other 

criteria yield related systems, and that many of these latter systems are simply 

minimum mean square error systems.  In particular, family trees for criteria 

expressible as f(G) and for time-weighted criteria are given on pp. 28 and 65, 

respectively.  (it would be possible to join appropriate branches from each of 

these trees.  However, the resulting single tree would have many branches, result- 

ing in a fairly complicated presentation which would tend to obscure the simplicity 

of many of the relationships involved.) 

E. BENEDICT AND SONDHI'S PERFORMANCE MEASURE (Applicable to Stationary 
Gaussian Processes Only, Both Wiener and Phillips-Type Optimization) 

For stationary Gaussian processes, Benedict and Sondhi (Ref. 38) have shown 

that the linear system (Wiener or Phillips-type) which minimizes e^ also minimizes 

any performance measure of the form 

f(|e|)  =  El^l''^ =  E|e|"k :,    - (27) 
k k 

where n^  is positive (but 
not necessarily an integer) 
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Proof 

Consider a general example 

f(UI) = Ul'"' + \ef^  + \^\^^ + ••• (28) 

where n^ ,  no, n^ •-• are real and positive integers or 
nonintegers (rational or nonrational) and the number 
of r^'s used is arbitrary 

Each term |£|  can be evaluated using the ensemble average, which for Gaussian 

processes is 

775 . 4„n5  . ,U=J^^".e-(^^/-^'.e) (.9) 

Using the integral tables of Ref. 39 ^ P- 201, 

^^ - SM c/^     , : (50) 

where    a = y e^ a,s usual 

r(x) = the Gamma function 

Substituting Eq JO into Eq 28 yields 

From Eq 31 it is apparent that f(|e|) can be minimized only by minimizing a. 

Therefore, the system that minimizes e2 minimizes all possible forms of f(|e|) 

as defined in Eq 27 and 28. 
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Generalization of Benedict and Sondiil' s Result 

It can be shown that f(|e|) Is a nondecreaslng function of €.  The slope Is 

df    V*   nv -1 
d€ (32) 

which for e > 0 Is always positive and nonzero.  It would appear that one could 

construct a great variety of f(|G|)'s by appropriate choice of the k's and rij^-'s. 

A typical f(|e|) is sketched below. 

f(kl) 

Figure 8. Typical Nondecreaslng f(e) Loss Function 

Note that f(|e|) could be generalized to the form 

'(lei)  = Z a^. jej nk (55) 

without changing the fact that f(|e|) is minimi zed by minimizing e^. 
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All the above results could have been derived using the analyses of Sherman 

and Chang presented later in this chapter.  The original derivation of Benedict 

and Sondhi was given because it is particularly easy to follow and forms a useful 

preparation for the discussion of Sherman's results that now follows. 

F.  SHERMM'S PERFORMANCE MEASURE ',, 

Benedict and Sondhi (Ref. 38) considered a fairly general f(G) with station- 

ary Gaussian random signals and found that f(e) was minimized by minimizing G^. 

The question naturally arises as to whether or not a similar simplification 

occurs when the signal and noise are nonstationary- and/or non-Gaussian random 

processes.  This problem has been solved by Sherman (Ref. 13), who showed that 

minimizing E[f(e)J ,  defined below, is accomplished by minimizing E[e2J ,  (Ensemble 

averages are used since the ergodic hypothesis will not hold if the input environ- 

is nonstationary.)  Many other performance measures can be expressed as special 

cases of Sherman's measure.  These special cases are detailed below, and their 

interrelationships are summarized on the "family tree" on p. 28. 

Sherman's "loss function," f(e), has the following properties: 

f(0)  = 0 null property 

f(e)  = f(-e)      symmetry property 

f(e2) > f(ei) > 0 ) 
\    monotonic property 

for  £2 - *^1 ^ 0 ' 

(5^) 

This f(e) is similar to the loss function of Benedict and Sondhi (Ref. 38) 

(illustrated in Fig. 3 ) in that f(e) must never decrease for increasing |e|, but 

it differs in that it may have zero slopes at some points or in some regions. 

The optimiim system should minimize the ensemble average loss, which is 

/•oo roo 
E[f(e)]  = /   I   f(c<i - c)p(C(i, c)dc^dc (35) 

By a line of reasoning similar to that in Section C, Eq 35 can be written in a 

form similar to Eq 26.  In the derivation of Eq 36, one merely substitutes f(£) 
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for e^,  and then the equation corresponding to Eq 25 for Erf(e)l becomes 

Jrco   /•CO /-oo 
j      p(?)drodrT ■ • • dr^ I  f(ca - c)p(c^/?)dcd    (36) 

00   J-co J-co 

The system that minimizes Eq 36 depends on the particular conditional density 

function, p(C(3^/r), that results from the given signal and noise distribution. 

NoWj if the conditional probability density function, p(c(3^/r), satisfies the 

following sixfficient conditions (derived from some more general conditions stated 

by Sherman, Ref. 13), 

1 .  symmetric about the origin of C;^^ 

2.  has its only maximum there .: 

3-  is continuous 

then a lemma in probability theory quoted by Sherman states that E[f(c(3^ - c)/r 

is minimized when c equals the conditional mean of c^  given r", i.e.. 

= E [cd/r] (37) 

where  c  = c(t) 

C(i  =  c^(t) 

r = the sequence TQ,  r-^ ,   ^2  '' •   r^^ 
as defined in Section C, Eq 2*4- 

Equation 37 describes the system that yields the absolute minimum Erf(e)'] at the 

present time, t.  This is the same system that minimizes the a^,  which, as noted 

in Section C, may well be nonlinear and/or time-varying, depending on the statistics 

of the signal and noise present.  Kalman (Ref. ko)   remarks that as far as he is 

aware, it is not known what is the most general random signal and noise for which 

the conditional distribution function satisfies conditions 1,2, and 3 above. 

Special Cases 

f(e) ■= e^.  It was shown in Section C that when f(e) = e^, Eq 37 for the 

optimum system minimizes E(e2) without the requirement that p(c(3^/?) satisfy condi- 

tions 1,2, and 3 (following Eq 36).  This was also noted by Kalman in Ref. kO. 
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Gaussian Signal and Noise.  In the important case of nonstationary Gaussian 

signal and noise, the conditional distribution of C;^^ given 'r' is Gaussian (as 

shown by Cramer, Ref. 37, p. 315)^ which satisfies conditions ^,  2,  and 3.  As 

demonstrated in Section C, the output of the optimum system (Eq 26) is a linear 

function of the past values of the sum of signal and noise.  If the signal and 

noise are stationary as well as Gaussian, the absolute optimum system for all 

f(G) as defined in Eq 26 is the Wiener system. 

Chang's Extension of Sherman's Results for Gaussian Processes.  In many sit\ia- 

tions it is desirable that the mean error, "e, be equal to zero.  For these cases 

Chang (Ref. io) has shown that, for Gaussian processes, minimizing a| also mini- 

mizes Sherman's f(e).  This will be true even if the symmetry property of f(e) 

in Eq 5^ is relaxed.  The above result is almost intuitively obvious, since a 

Gaussian process is determined by its mean and variance, and with zero mean 

only the variance can be reduced to reduce f(e). 

Kaufman's (Ref. i6) Performance Measure.  Kaufman has used as a performance 

measure 

lim  1 r     ^ 2n^,     li   ^ 
""    = T^CD 2T     E e^e ^* =  E c^e (38) 

J-T n=1 n=1 

for cases where e^ is not siifficiently meaningful. He restricted his analysis 

to the following situations: 

1 .  signal and noise are statistically independent processes 
with non-Gaussian probability density functions which 
are symmetric about the mean 

2.  only linear systems are considered. 

Kaufman showed how to evaluate and minimize X analytically. The procedure was 

approximate and quite involved, and only calculations of e^ and e^ were demon- 

strated. 

The system that yields the absolute minimum X depends on the conditional 

density function of the signal, given the past history of the sum of signal and 

noise (as shown by Eq 37).  The information given in Item 1 above is not suffi- 

cient to apply Sherman's simplification to this performance measure.  But if the 

conditional density function of c^ given r'satisfies Sherman's conditions, then 

f(€) may as well be replaced by e2.  The absolute minimum e2 system quite probably 

will not be linear since the signal and noise are non-Gaussian. 
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G.  PUGACHEV'S MD STREETS' MINIMIZATION OE GENERAL F(e) CRITERIA 
WHEN THE SIGNAL IS PARTIALLY DETERMINISTIC 

In this section, optimization procedures for a class of inputs more general 

than that hitherto considered will be summarized.  These inputs are allowed to 

have partially deterministic components.  This corresponds to an important group 

of flight control inputs where the input may have a component of known amplitude 

and form (as in bang-bang control), but where the timing between successive 

applications of this input component is random.  As described in Section E of 

this chapter, the minimum €2 system also minimizes a wide class of other F(e) 

measures.  Pugachev (Ref. ]k)  has shown that, when the input contains Gaussian 

signals plus a partially deterministic component, the minimum e2 system is either 

equal to, or very simply related to, the minimum F(e) system, where F(e) is a 

general loss function.  Pugachev's results will now be briefly summarized and a 

brief account given of their application by Streets (Ref. k-]).     This will be fol- 

lowed by a summary of Lubbock's procedure (Ref. k-2 ) for optimizing a class of 

nonlinear systems to yield minimum e2 with non-Gaussian inputs.  The reader 

concerned only with random Gaussian inputs will find little use for the analyses 

of Pugachev, Streets, and Lubbock, and he is advised to skip these sections and 

turn to the Summary on page 39. 

Pugachev (Ref. ^k)   considers an input signal given by 

N 

r(t)  = s(t) + n(t) + Y,     o-k^k^^) (59) 
k=l 

where   s(t)  = stationary Gaussian signal 

n(t)  = stationary Gaussian noise 

a^f-|j^(t)  = additional signal terms; the fi5^(t) are 
known functions of time, and the ajj_(t) 
are random variables with a known 
Gaussian joint probability density 
function, p(a/ja2 ••• cxjj) 

It is also assumed that s(t) and n(t) both have zero means, known auto- and cross- 

correlation functions, and are statistically independent of the additional signal 

terms.  The desired output, C(3^(t), is a linear function of the total signal, 

s(t) +X!c('kfk(t)- 



Pugachev shows that for an arbitrary error criterion, F(e) fnot restricted 

to be a nondecreasing even fxinction of (e)J , the optimum system is the e2 

optimiom linear system plus a constant bias term, k, as shown in Fig. 9. 

e2 optimum 
linear system 

+- 

k(t) 

Figure 9-  Pugachev's Optimum System 

The error has a mean value of k and changing the form of F(e) changes k, but 

does not affect hx(t), the e^ optimum system weighting function.  If F(e) = f(€), 

an even function of the class defined by Sherman, then k is zero. 

Streets (Ref. k■^)  has worked out two problems of the type considered by 

P\igachev.  He demonstrated that a theoretical (linear, time-varying) system can 

be designed which, by taking advantage of the partially deterministic character 

of the input, yields a lower e^ than a Wiener system.  The problems studied have 

Gaussian white noise for n(t), while s(t), the purely random signal component, 

is zero in Eq 39.  Streets described the partially deterministic signal as 

follows.  The signal is a stationary process which consists of a sequence of 

random steps [^random ramps in the second problem^ of constant-amplitude fvelocity] 

segments (see Fig.10 ).  The amplitude changes at "event points" that are Poisson 

distributed in time.  The amplitudes have a Gaussian distribution with zero mean. 

The amplitudes before and after an event point are independent.  The desired out- 

put equals the signal. 

lr(t) 

Figure 10.  Partially Deterministic Signal 
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1 
The signal described above has a power spectrum of the fonn —^ ;r fRef. "30. 

a? + v^ ' 
p. 237).  If the noise has a white spectrijm f^^^Ctu) = constant], the Wiener system 

is a first-order filter.  In competition with this. Streets' theoretical optimum 

system requires the following three components: 

1•  a perfect event-point detector 

2. an adaptive device which monitors the time from the last event 
point and adjusts the system parameters accordingly.  At each 
event point this device sets the output signal equal to the 
expected mean and other output initial conditions equal zero 

3. a linear, time-varying filter plus a bias term when using non- 
even criteria. 

For low-frequency signal-to-noise ratios of 1 and 100, the improvement in 

performance given by Streets' theoretical system is such that the mean square 

errors are reduced to 90 percent and 55 percent (respectively) of the Wiener 

values.  Similar results were obtained for the second problem using random ramps. 

Streets remarks that the improvement in performance given by the theoretical 

system over the Wiener system is not as great as might be expected.  This is 

because the input signal in each example is a "near Gaussian" signal.  A more 

non-Gaussian signal would be expected to offer a larger potential improvement 

through use of a nonlinear or adaptive system. 

It is important to note the following points about Streets' theoretical system: 

1 .  it is optimiom for the criterion of Pugachev 

2. no other adaptive or nonlinear system can give a smaller e^ 

3. it can be analytically designed and is physically realizable 
except for the perfect event-point detector. 

Streets assumed a perfect event-point detector to simplify the analysis and 

to delineate the absolute lower bound on the mean square error.  If a Wiener 

system is close to this lower bound, there is little need to attempt to approxi- 

mate the Streets theoretical optimum system, since any physically realizable 

event-point detector must operate in a noisy environment and may miss event points 

or have a delay in detecting them.  Streets states that both these conditions 

will seriously degrade the performance of the time-varying system, but of course 

will not affect the performance of the Wiener system.  Streets also states that 

if the idealized signal is a poor model of the actual signal, the performance of 
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the theoretical system is degraded to a much larger extent than that of the 

Wiener system, since the Wiener system does not depend on the detection of 

event points. 

H.  LUBBOCK'S PROCEDURE FOR SYNTHESIS_OP A CLASS OF 
NONLIHEAR SYSTEMS HAVING MINIMUM e^ 

Lubhock (Ref. k2)   showed how to minimize the mean square error for a special 

class of nonlinear systems subjected to stationary random inputs with a general 

(i.e., not necessarily Gaussian) distribution.  The class of nonlinear systems 

is that which can be represented by a nonlinear gain operating upon the input 

followed by a linear system (see Fig. 11). 

'(t) f(r) h(T) :(t) {^0) 

Figure 11.  Nonlinear Gain Followed by a Linear System 

Lubbock's procedure is directly of interest in the context of this report as an 

example of how a fixed-fo2fm nonlinear system may be optimized for minimum mean 

square error.  This could be advantageous for flight control systems subject to 

markedly non-Gaussian inputs. 

The input and output are related by 

= (t)  = 
/•oo 
I  f[r(t - T)]h(T)di 
^0 

{k^) 

This is a special case of the following equation, which defines a class of 

filters, T]-] : 

/•GO 

c(t)  =  /  KfrCt - T), -HdT 
Jo 

{k2) 

Lubbock assumes that the kernel function, K( r, T), can be expanded in terms of a 

set of orthogonal functions, 6^{^)   (which are polynomials in x of degree a).  The 

output then becomes 
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^(t) = 
00  /• 00 

X; I  ejr{t -  T)] h^(T)dT 
a=0 Jo 

i^3) 

which can be synthesized by a multipath filter as shown in Fig. 12. 

Figure 12.  Lubbock's Optiimam Multipath System 

Lubbock claims that by using a finite number of terms in the expansion, the 

filter can be physically realized and made to approximate any system defined 

by Eq 42 with arydesired accuracy (assuming that the expansion converges). 

An integral eqioation for the optimum filter of class T)^ is derived by varia- 

tional calculus.  The information required to solve this equation is the joint 

probability density of the input, PgC^-, , r2, T-, - Tg), and the joint probability 

density, pp(r-, , c-,, T. ), between the input and the desired output.  Lubbock 

proceeds to formally expand each density function in a double series involving 

the first probability density functions, p(r) and p(C(3^); polynomials, 0^(r), 
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which are orthonormal with respect to p(r) and p(c(i); and the cross-correlation 

between the outputs of the polynomials (see Fig. 10).  The restrictions on the 

joint probability density function required to validate this procedure are not 

enumerated by Lubbock^ nor are they known to the present authors.  Using the 

truncated series representation for the joint probability density fimctions, the 

integral equation for the optimum system becomes a finite number of simultaneous 

integral equations. 

Lubbock notes that there are situations in which the optimum general system of 

class T]^ reduces to the Wiener system.  The conditions for this simplification to 

take place define a class of joint probability density functions which includes 

Gaussian density functions. 

I.  SUMMARY 

This chapter has been concerned with random input performance measures that 

are expressible as functions of error alone^ the error being defined as the dif- 

ference between the actual output and some specified or desired output.  The most 

important result presented has been the demonstration that for a very wide class 

of such f(e) loss functions, f(e) is minimized by the Wiener or Phillips system, 

provided that the input is Gaussian. Many flight control inputs have approxi- 

mately Gaussian distributions (e.g., atmospheric turbulence, see Ref. 43 and kk) . 

Hence, for many situations of practical Interest in flight control optimization, the 

optimum system is the same for minimum |e|, e^,   e^, etc., and changing the loss 

function accomplishes no real change in the optimum system.  Since it is so dlffi- 

c\ilt to "escape" from the minimum e^ criterion, it is worth reiterating its 

advantages and deficiencies.  As noted in the Introduction, the principal require- 

ments for a performance criterion for flight control systems are validity, 

selectivity, and ease of application.  The minimum €^ criterion may be briefly 

assessed in terms of these qualities as follows: 

Validity. Minimum e2 is only moderately valid as a performance criterion, 

because it frequently selects damping ratios somewhat lower than would be con- 

sidered optimum on the basis of transient response. Figure 5 Illustrates this 

point: for an integrated white noise input, the second-order system considered 

gave minimum e2 at ^ = 0-5. 
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Selectivity.  In all the cases that have been examined in the course of 

preparing this report, the optimum e^ system yielded a mean square error only a 

little less than that given by a wide range of off-optimum systems.  For the 

unit numerator second-order system of Fig. 5, varying t,  between O.k  and 0.6 

raised e'^  only 2.5 percent above the minimum.  A similar lack of selectivity is 

exhibited by lE^ for transient inputs (see Fig. l6 of Ref. l).  (By comparison, 

the degree of selectivity displayed by the ITAE performance measure for step 

inputs is generally regarded as acceptable in this respect, and this gives a 

7.5 percent increase in the measure for a change of ^ of ±0.1 from the optimum 

of ^ = 0.76 for the above system.) 

Ease of Application.  The present study is directed principally at "pencil 

and paper" methods of optimization, and it is essential that any criterion 

selected possess analytic forms which are simple enough for manual calculations. 

It is fortiuiate in this regard that (as noted in the Introduction) flight control 

systems can almost always be represented by low-order "equivalent systems."  This 

simplification keeps Phillips-type optimization within the bounds of practicality. 

For high-order systems and input spectra, the tabulated Phillips integral forms 

for e^ can become very lengthy.  However, none of the examples in this report 

required more than a few man-hours for the evaluation of these integral forms. 

The €2 criterion is thus judged to be adequately easy to apply to linear systems. 
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CHAPTER II 

EXCEEDMCE CRITERIA AND CRITERIA FOR MIXED RANDOM AND DETERMIMISTIC lUPUTS 

Section A of this chapter discusses exceedance criteria, i.e., criteria 

defined in terms of a certain fixed level of the error or output.  Usually one 

attempts to minimize the average number of times per second that the specified 

level is crossed.  Alternatively, one may seek to minimize the probability that 

the error will exceed the specified level; such a "probability criterion" was pro- 

posed by Zadeh and Ragazzini in Ref. l8 and is examined in Section B of 

this chapter.  Zadeh and Ragazzini considered inputs comprised of a detenninistic 

signal plus random noise.  It will be shown that for such inputs the probability 

criterion is of little value, although mean square error criteria can be success- 

fully applied.  A discussion of this last point is given in Section C. 

A.  EXCEEDANCES 

Thorson and Bohne (Ref. ^1-5), among others (Ref. h6  and ^7), have discussed 

methods of calculating the expected total number of exceedances of a prescribed 

level experienced by a specified vehicle during a given mission.  This number of 

exceedances, coupled with information on the fatigue characteristics of the struc- 

ture, can be used to determine the expected life of the vehicle.  Total exceedance 

mombers differ from the performance measures previously discussed in that they are 

not primarily intended to assess dynamic performance, but instead describe another 

fundamental parameter of system effectiveness, i.e., the vehicle's expected life. 

However, it is logical to inquire whether exceedance concepts can be used to form 

dynamic performance measures.  In order to answer this question, some specific 

formulas for exceedances are required, and these will now be presented. 

Exceedances can be expressed in two forms (which are frequently equivalent): 

1 .  the average number of exceedances of a given level by the 
output (or error quantity) per unit time (or per single 
mission for fatigue calculations to determine the total 
permissible number of missions) 

2.  the fraction of the total time during which the output (or 
error quantity) exceeds the given level. 
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For stationary random inputs, the ergodic hypothesis permits form 2 to be expressed 

as 3.  the probability that the output or error quantity will 
exceed the given level. 

In Ref. 18 this last form is proposed for the optimization of systems subjected 

to inputs having both random and deterministic components.  This probability 

criterion is examined in Section B of this chapter, and is shown to be difficult 

to apply in nontrivial cases. Throughout the section that now follows, station- 

ary random inputs will be assumed. 

Formulas for Average Exceedances Per Second 

Rice (Ref. 17) has shown that for a Gaussian signal, v(t), with zero mean, 

the expected number of axis crossings per second (including crossings with both 

positive and negative slopes) is 

No = 
1 

L     dT2       J 

V 

T=0l 

"Too 

Jo    ^'^v^^)'^^ 
/•CO 

_ Jo   *w(f)<if _ 

1/2 

I 
rt 

" roo 

«j        Rvv(o) roo 
J_oo*vv(^)<i"^ 

-,1/2 

(hh) 

OCl 
where f = 7;- = frequency 

For rectangular spectra ranging from c% to a^, the expected number of axis 

crossings per second is 

1 H - 4] 
5 (% - ^) 

1/2 

When du = 0 this reduces to —^— cu, . Hence for many spectra of practical interest 

the number of zero crossings, NQ, can serve as an indication of bandwidth.  NQ 

times the total operating time may also be employed in a fatigue criterion, since 

it indicates the total expected number of stress reversals.  In situations where 

knowledge of No is significant, the average nimber of maxima per second, %, may 

also be important. This is given by Rice as: 
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N, 'M 2rt 

'iV(^)' 
dT 

\l/2 

JT=0I 

d^R(T)" 

L dT 
<r=0 

2jt 

CO f -|l/2 

A^ 

Jpco 

0 ATV 

(i^5) 

For rectangular spectra of  the  type considered In the previous paragraph,   this 

reduces to 

l/2 

% = ^ 
1_ 
2jt 

O'll'? 

(46) 

When a:^ = 0, the average number of maxima per second is simply  ' '  m . 

Of much more direct interest as a fatigue criterion and a possible performance 

measure is the average number of exceedances per second of some specified output 

level, L.  For Gaussian inputs this is given by Rice (Ref. 17) as 

WL = 

-L2/2O2 

X Nr ■ (^7) 

where WQ = average number 
of zero crossings per second 

Strictly, this formula only applies when L » CT.  The accuracy of the fonnula for 

smaller values of L has been investigated by Press, Meadows, and Hadlock in Ref. k^. 

They conclude that for L/a > 2, the formula is in most cases valid.  For values 

of L/CT < 2, it tends to slightly underestimate the number of exceedances.  It is 

noted in Ref. 45 that for moderately flexible airplanes, the formula is 10 to 15 

percent low at L/a = 1 and 2 to 3 percent low at L/CT = 2.  This would certainly 

be acceptable for purposes of systems optimization; hence Rice's formulas will be 

retained in the discussion that now follows. 

Exceedance lumbers as Performance Criteria 

The conventional use of exceedances as fatigue criteria relates to the number 

of output exceedances above a given level.  To form dynamic performance criteria 
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it would seem to be more appropriate to consider the number of error exceedances. 

However, there is some interest in determining whether conventional output 

exceedance fatigue measures can also be used as performance measures.  Therefore, 

in this section both output and error exceedances will be investigated for a 

second-order unit numerator system subjected to a stationary Gaussian input, and 

the variation of these exceedance niimbers with ^ will be examined.  The principal 

results obtained are 

1. minimizing the output (or error) exceedances is not equivalent to 
minimizing the mean square output (or error) 

2. the direct application of error exceedance formulas to some input 
environments is hampered by the failure of certain integrals to 
converge.  Apart from this, the criterion is fairly easy to apply, 
and is valid and selective when the low-frequency ratio of signal 
to noise power spectra is fairl high (50:1).  Unfortunately, for 
lower values of this ratio (5:T) the niimber of error exceedances 
tends to be minimized by excessively high ^ for the second-order 
system investigated 

3. further investigation of error exceedance criteria is recommended to 
overcome the convergence problem and to explore a suggestion (Ref. 57) 
that they are used by human pilots performing tracking tasks. 

Output Exceedances 

An example will now be given to illustrate point 1 above.  The system consid- 

ered has the transfer function 

H(s)  = ^^—1  (48) 

The  input power spectrum is 

s^ + 2^s  + 1 

%,io^)     =     *,,(-)     =    ^^ (49) 
a    + CD 

and zero noise is ass\imed.     Combining Eq 48  and 4-9,   the output power spectrum is 

J 1 
+ l)(-s  + a)J 

*cc(^)     =      -^ 5 I (50) 
{s'^ + 2^s  + l)(s  + a)      (s'^  -  2^£ 

■S=JCD 
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In order to evaluate No, the number of axis crossings, it is necessary to compute 

Jo  <^*(^)(ia), and J^ <j)(oD)dao in Eq kk.     These integrals may be evaluated by use of 

the Phillips integral formulas.  The final result is 

N,        ^ 
0 " jr(2^ + a) (51) 

The average number of exceedances per second of an output level L is 

L^2a(l + 2aC + C^) 

L = 2^(2^ + a) • ^ (52) 
N.  = —^ ^ . o    W^^ 

Figures IJ and ^k  illustrate how the niimber of exceedances varies with ^ for 

a = 0.1, and for L = ^,   3,  5, and 7.  As would be expected, the exceedances 

decrease monotonically with increasing ^; this is physically reasonable since 

increasing ^ implies that the system is becoming more sluggish and less liable 

to overshoot. 

To obtain a physical "feel" for the meaning of this result, consider Fig. 15. 

This figure illustrates the variation with ^ of (^.^.,  the mean square output. 
„ f j"" OUT,pUb 

("output ^^^ evaluated by computing J_ * (s)ds using Phillips integrals.)  Com- 

paring Fig. 15 with Fig. 13 and ^k,   it is seen that the fall-off of NL with 

increasing ^ is more rapid than the fall-off of o^^tpuf  This is made clear in 

Fig. 16 which shows the ratio ^jja  plotted versus ^ for L = 1, 3, 5, and 7.  For 

each of these values of L, increasing ^ causes NL to diminish more rapidly than a 

as shown by the monotonic decrease of the ratio NL/CJ.  Figures 1 3, ^k,  and 15 

show that minimizing either o^^^p^^ or N^ yields ^ -^co.  Minimization of these 

output quantities thus appears unpromising as a performance criterion and will not 

be pursued further in this report. ' 

Error Exceedances 

The unit numerator second-order system will now be used to investigate error 

exceedances as performance measures.  Consider the system illustrated in Fig. 17 
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with statistically independent signal and noise input: 

cJ>Ja,)=N' 

'*ssM=-r^ 
(a2+a;2f    ^ + * 

s^ +2^s 11 ^ 

Figure 17-  System for Inver^tigation of Error Exceea-j.r.ces 

The error is the difference between the signal and the output.  The average number 

of exceedances per second of some specified level of the error, L, is 

^^L = 2^ 
i .-L2/2ai 

^^0 (53) 

where N^ = the average number of zero 
crossings per second of the error 

N 
^ 

Jo   ^%e^ 
-.1/2 

ao)dcJD 

Jo ' 0 €6^    ' 

2jtj J-^ 

oo 
-s2<|) ^(s)ds 

2ii:j  ^-ico      €€ 

l/2 

-'S=JflD 

Using the formula for the error power spectrum,^££(s), given in Ref. 50, p. 239, 

%^{s)     =     [l - H(s)] [l - H(-s)]<&^^(s) + H(s)H(-s)<I>^^(s) 
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and substituting the expressions given in Fig. 17 for H, 4> , and <I>  yields ■ nn 

i>   (s) 
" -s(-s + 20 

(s^ - 2^s + 1) 

s(s + 20 

(s^ + 2^s + 1) (-S + a)^(s + a)' 
(5^) 

K^ 

(s^ - 2^s + l)(s^ + 2^s + l) 

Note that if the denominator of the input power spectrum had been only of second 

order (as in the output exceedance example)^ the numerator of Eq 55 for Wg^ would 

have failed to converge since ar<^^^{(X))  would not tend to zero for large co.  This 

disadvantage is more likely to occur for the error exceedance formulas than for 

the output exceedance formulas because the order of the numerator of <I>g£(cJD) in 

Eq 55 is higher than the order of the numerator of the corresponding <t>^^{o:>). 

This lack of convergence does not appear to reflect any physical peculiarity of 

the actual system response, and it should be possible to recast the formulas to 

avoid this difficulty.  This problem may merit further investigation. 

Evaluating Wg using 

-2    _ 
2nj J_ 

joo 

JOO 
%e(s)ds 

yields 

and 

N. 

K^ja +  a^^ + 4af;^ + 4i;^) 

m 
(8a5 + ka + kaP)t;,  +  (l6a^ + ^6a^)t,^  + ^6a\^ 

1/2 

^ 

where Z 

(8a5 + 4a + i^a^)^ + (l6a^ + l6a2)^2 + ,5^3^ 3 

(55) 

(56) 

i^2a^[a  + a2(a2 + 1^)^ + 4a(a2 + 1 )^2 + ^^2^3]   ^^2 

^ 
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Figure 18 illustrates a typical variation of Kg and e2 with ^ for L = 2, 

a = 0.25^ N = 1, and K = 1/5O.  For this situation the low-frequency ratio of 

the signal to noise spectra is approximately 5:1 • With this signal to noise 

ratio^ neither e^ nor Ngp yield a satisfactory criterion. 

Figure I9 illustrates the effect of changing Y?  to ^|'^,  thus making the low- 

frequency signal to noise spectra ratio 50:1.  There is a marked change in the 

behavior of the Ng^ graphs which now display highly selective minima at ^ = 0.8 

to 0.9 for large values of L. 

This change in behavior makes it difficult to form a complete assessment of 

error exceedance criteria without a much larger number of examples. 

B. PROBABILITY CRITERIA 

Eagazzinl and Zadeh (Ref. 18) have proposed the probability criterion 

maximum p maximinn probability < L 

for handling situations where it is desirable that the magnitude of the error be 

less than a certain critical value L; i.e., all errors larger than L are equally 

bad, while those smaller are equally acceptable.  This may well be the case in 

some problems of ballistics and many flight control applications.  It is apparent 

that for such cases the mean square error does not correctly reflect the require- 

ments of the system. Ragazzini and Zadeh's development of the probability 

criterion is summarized below; it will be shown that in nontrivial cases, the 

criterion is difficult to apply. 

The problem is set up by Ragazzini and Zadeh in the following way: 

^   * » G(s) 
c 

r 

H(s) 

Figure 20.  Block Diagram for Probability Criterion Optimization 
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The error arises from a transient desired input, and from random disturbances 

arising both inside and outside the system; i.e.. 

e = £c + e s + % (57) 

where  Gg  is the systematic error due to transient Input 

e^ is stationary random noise (normally distributed) 

Note that this error is the conventional "actiiating 
error," not the difference between input and desired 
output 

The structure and components of the system are specified completely except 

for a number of adjustable parameters, Oq , og, ••• ct^.  The objective is to 

assign values to a^ which maximize the probability that at a prescribed instant, 

t = to, the magnitude of e will be less than a given tolerance, L. With a 

normally distributed noise variable, the probability, p, may be written 

r "1 1       r^sO'*"-'-'      2/c)rr2 
p = probability Ig(t)|   < L  =    ' e""^ /^°^du (-58) 

L   t=to  J    ^ a  Je^Q-L 

where e^g is the value of Gg at t = tg 

o^ is the variance of the noise = E(e^) 

L is the critical value of |e| 

If the sequence of events under consideration is repeated many times (with the 

same input, the same Initial conditions, and the same free parameters), the value 

°^ ^sO will be constant.  With this understanding, the ensemble average mean 

square error takes the form 

E[€2(to)]  = (ego^^ + o^ (59) 

In Ref. l8, p is compared with E [e2(tQ)] to examine whether maximizing p also 

minimizes E[e2(to)] .  From Eq 59, for minimum E[e2(tQ)] , it is necessary that 

SE[e2(to)] 
 §^^T  = 0,   1 = 1, 2, ••• ni (60) 
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Substituting Eq 59 into Eq 60 yields 

Similarly, for p to be a maximiim, it is necessary that 

e^-.^ + a^ = 0 (61) 

^-^^^)^tm-° ^ 
^ 

where 1=1,2, 

Choosing the coefficients Sp/SegQ and Sp/5a in Eq 62 to exactly match those in 

Eq 6l demands that the ratios ego/C^p/^^so) ^^^  a/(Sp/5a) should be equal. 

Ragazzini and Zadeh show that this requirement can be satisfied approximately 

over a wide range of values of ^^Q,  L, and a, when 

and 
|£sOl « ^ 

iLesol « 0^ 

or 

^sO I » a 
and 

e sOl = L 

It is concluded in Ref. l8 that imder these conditions, maximizing p is 

the same as minimizing E[_e (tQ)J .  However, in all practical situations, it will 

be found impossible to both satisfy these conditions and achieve a nontrivial 

result.  Either e^Q changes with changes in the a^'s, or it does not.  If it does 

not, all one can do to maximize p is to minimize o^.  If C^Q changes with the 

ttj^'s, there is no guarantee that the inequality conditions above will always 

hold as the a-j_'s are varied.  Because this is the most likely case, trial and 

error methods must be resorted to in order to use the maximiim p criterion.  Thus, 

this criterion fails to meet the requirement of ease of application. 
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C.  A NOTE ON THE MINIMUM MEM SQUARE ERROR CRITERION 
WITH MIXED DETERMINISTIC AND RANDOM INPUT COMPONENTS 

The previous section described how probability criteria could be applied to 

a system subjected to a deterministic command corrupted by random noise.  Zadeh 

and Ragazzlni (Ref. 12) have also considered the case where the total signal has 

three components: 

1 .  n(t)^ stationary random noise with zero mean 

2. m(t), a stationary random signal with zero mean 

3'  sCt), a deterministic signal representable as a 
polynomial in t with a finite nijmber of tenns. 

For this case the minimum mean square error criterion is used with a finite 

observation time, T; i.e., the task is to find the system that will minimize the 

ensemble average (over a large number of trials) of the mean square error, the 

mean of each trial being taken over the observation time, T. 

An account of Zadeh and Ragazzini's procedure occupies the whole of Chapter 8 

of Ref. 7 ;   the procedure is lengthy to explain, complicated, and demands consid- 

erable computational labor for problems of practical interest.  Indeed, both 

Ref. 7 and 12 give only simplified examples for which either the random or the 

deterministic component of the signal is absent.  From the viewpoint of the 

present study—which is directed toward "pencil and paper" methods of optimiza- 

tion— the method fails to meet the requirement for ease of application.  In view 

of this, and because it is difficult to present a detailed account of Zadeh and 

Ragazzini's procedure that is appreciably shorter than that given in Ref. 7, 

only an outline of the method is given here. 

The presence of the deterministic component in the signal leads to the 

establishment of certain conditions upon the time moments of the optimum impulsive 

response.  The minimization of the mean square error is then effected by combining 

these conditions using Lagrange multipliers in a fashion similar to the minimiza- 

tion of performance criteria of systems subject to constraints due to nonlinear- 

itles, etc. (e.g., Ref. 6). 

Assuming that signal and noise data are available only in the interval 0 to T, 

the system response is given by 
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/•T 
c(t)  =  I  |g(t - T) + in(t - T) + n(t - T)| h(T)dT (65) 

JO 

where h(T) is the actual system weighting function 

Since gCx), by definition, is expressible as a polynomial in T with a finite 

number of terms, it can be expanded in a Taylor series as 

:(t - T) = g(t) - T^(t) +|^g"(t) + ••• + (-i)^I^g(r)(t)     (61.) 

where r is the order of the polynomial describing 
the deterministic signal 

Substituting Eq Gk  into 63 yields 

c(t) = HQgCt) - nig'(t) + ..• + (-i)^gg(^)(t) (65) 

/•T /"T 
+ I m(t - T)h(T)dT + I n(t - T)h(T)dT 
^0 Jo 

/•T 
where  ^^ = I T^(T)dT, v = 0,  ^ ,  2.,   — r 

JO 

Since m(t) and n(t) are stationary with zero means, the ensemble average output 

at time (t) is only the nonrandom component, g(t). ■ 

TT 

=  / e 
^0 

= nos(t) - ^ilg■(t) + ••• + (-i)^^g(^^(t) 

C(t)   =   I  g(t - T)h(T)dT (66) 
'0 

If the desired response is physically realizable, then it must be capable of 
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being related to the total signal by an equation of the form 

/oo 
[g(t - T) + m(t - T)]hi(T)(iT 

oo 
(t)  =  I  [g(t - T) + m(t - T)]hi(T)dT (67) 

where h^ = an "ideal" weighting function 
defined by Eq 67 

As previously^ the stationary random component vanishes when an ensemble average 

is taken 

Ca(t)   =  I   g(t - T)hi(T)dT (68) 
J-00 

For the error to have zero mean, „ 

7^) - ^   = 0        : (69) 

Substituting from Eq SG  and 68 into Eq 69^ 

I 00 g(t - T)hi(T)dT  =  H g(t) - H.g'(t) + ••• (-l)^^g'(t)       (70) 
GO 

Equation 70 determines the values of the first r + 1 moments, |IQ, \I-, ,   • • • \i.^,   of 

the optimum impulsive response, h^(T).  In Ref. 7 it is shown that the ensemble 

average of the time-averaged square error (i.e., 1/TJ e dt) can be expressed as 

'"^'^    /"OO /•GO rco  /"T 
e^ =  I   I Vn(^ - e)tii(-r)hi(e)dTd0 - 21   | I^T - 0)hi(T)h(e)dTd0 

J-ooJ-co J-ooJo 
nT 

M^ - ^) +Rnii^'^ - e)]ti(T)h(0)dTde     (71) 

where B^^^ and R^^^ are the autocorrelation functions of m(t) and n(t) 
iThere is assimied to be zero crosscorrelation between m(t) and n(t)| 

e^ is minimized when h(t) satisfies the following integral equation: 
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I  M* - ^^  + W^ - T)Jh(T)dT = 7o + 7it + ••• + /rt"" + I  Hm(t " T)hi(T)dT 
^0 J-co 

where 0 < t < T (Y2) 

yo>   y-\>   "'   yr ^^^  Lagrange 
multipliers 

The procediire for determining 7Q, y-^ ,   • • • y^  and for solving Eq 71 is described 

fiilly in Ref. 7- 

The above discussion, and that of the previous section, has been concerned 

with sitiiations where the command is partially or completely deterministic. 

This implies well-defined initial conditions (at least within certain limits) 

and often a finite time of observation.  These conditions apply to such problems 

as missile interception, orbital rendezvous, automatic landing control, etc. 

For these problems, tenninal errors are much more important than errors 

occurring earlier. Therefore, it seems more logical to employ time-weighted 

criteria (instead of minimum e^) so that the analytical optimization procedure 

truly reflects how the importance of the flight control system function varies 

with time.  Such time-weighted criteria are discussed in the chapter that now 

follows. 
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CHAPTER III 

TIME-WEIGHTED CRITERIA 

Time-weighted criteria are very suitable for normalized linear constant- 

coefficient systems with deterministic inputs.  For example, criteria such as 

/•co 
minimum ITAE  = min /  t e dt 

JQ 

minimim IT^E^    =    min /      t^fe]   dt dn /  t5[e]' 
Jo 

have been shown (Ref. l) to yield satisfactory systems for step inputs, and are 

highly selective.  It is logical to inquire whether corresponding criteria 

could be evolved for random inputs.  This chapter investigates this problem by 

examining the three published criteria listed below. 

1 • Murphy and Bold's Criterion 

/+T . ! 
W(t)[e(t)]^dt ■ 

where W(t) is a time-weighting fimction statistically 
independent of f[e(t)] and may be deterministic 

2.  Zaborszky and Diesel's Probabilistic Square Error Criterion 

2/ 
/•CO, 

Jo 
minimixtn  I      p(t)e   (t)dt 

where e (t) is the ensemble average of system error 
squared taken over a number of trials, and p(t) can 
be interpreted as a time-weighting function indi- 
cating the relative importance of errors occurring 
at different times.  It is usually permissible to 
assume the trials to be concurrent; the averaging 
sign then need not be extended over p(t). 
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Glover's Criterion 

minimum ^ __ -^   \ :r;r K  dt 
^-T  [c 

11m _L ( ""•    eg(t) 
T^co2T I.  [. (t)]2,52 

where c^(t) is the desired output^ axid B is a 
constant which dictates the lowest absolute 
accuracy of Interest 

The principal conclusions of this chapter are that 

1 . Muiphy and Hold's criterion yields the same optimum system for 
all choices of W(t), if the input environment is stationary. 
This is true even when the criterion is generalized by replac- 
ing e^ with any other f(e) 

2.  the probabilistic square error criterion is suitable for 
•        nonstationary situations (such as repeated missile trials) 

when a meaningfiil selection of p(t) can be made 

5-  Glover's criterion, when applied to free-order linear systems 
with uncorrelated Gaussian input and noise, yields optima 
closely related to the Wiener system. When the system order 
is constrained (i.e., Phillips-type optimization), the criterion 
tends to be unselective. 

These conclusions are summarized in Fig. 21 . 

A. MUEPffif MD BOLD'S CRITERIOK 

In Ref. 20}  Murphy and Bold propose the MWSE (mean weighted square error) 

criterion 

minimum MWSE = minimum m^"^ 2^ I  W(t)e2(t)dt (75) 

W(t) is statistically independent of e(t), and may be deterministic. This crite- 

rion is a special case of the more general criterion 

JT 
W(t)f [e(t)]dt       {-Jk) 

62 



CRITERION 

SPECIAL 
CONDITIONS 

ON INPUT 
ENVIRONMENT 

W(t) statistically 

independent of e(t). 

[w(t) may te random 

or deterministic.J 

Stationary input 

GENERAL FORMS 

Minimum W(t)f[e(t)] 

Minimum 
/^ OO^Fv^vvN/vyvNA/VNAAA; 

a/ p(t)f[e(t)]dt 
Jo 

Nonstationary input 

W(t) statistically dependent 

on e(t), e.g., Glover's 

amplitude-weighted measure, 

1 
W(t) = 

[ed(t)] + 5^^ 

Stationary input 

CONCLUSIONS 

As shown on p. 65 

MWFE = W(t) X f[e(t)]. 

Hence, minim\im f [e(t)] 

system is optimum. If 

f[€(t)] = [e(t)]2. then 

the opt imum system is 

Wiener or Phillips- -type. 

Valid criterion if meaning- 

ful p(t) can be specified. 

Optimization using f[e(t)J = e^ 

has been extensively studied 

and is (in principle) simple 

to perform. 

With uncorrelated Gaussian 

signal and noise, the opti- 

mum system is a constant 

times the Wiener system.  No 

similar simple relationship 

exists for Phillips-type 

optimization. 

Figure 21 .  Summary of Time-Weignted Performance Measures 



Although it was not investigated by Murphy and Bold, many of the results to be 

proved below also apply to this form. 

Murphy and Bold derive the expression for the optimum MWSE system by a pro- 

cedure analogous to Wiener's.  A sirfficient condition for the MWSE to be a minimum 

is also derived, i.e., 

W(t) > 0   for   -CD < t < oo 

which one would intuitively expect, because this keeps the integrand in Eq 7^ 

positive.  Murphy and Bold apparently failed to realize that minimizing the MWSE 

is equivalent to minimizing e^ (which will be proved below).  This point also 

seems to have been overlooked by Zaborszky and Diesel (Ref. kg)   in their comments 

on Ref. 20, and in the accompanying reply of Murphy and Bold.  The equivalence of 

minimizing MWSE and e is proved by demonstrating that 

MWSE =  (e2)(w) (75) 

Proof 

By definition, MWSE = W(t)€2(t) (T6) 

where the bar denotes time averaging 

Consider W(t) to be detenninistic with a finite time-average value and e(t) to have 

zero mean.  Taking the ensemble average of a number of repeated trials yields (using 

the same system for each trial) 

E[MWSE]  = E[w(t)e2(t)] (77) 

As shown on p. 65 of Ref. 50, it is permissible to interchange the order of time 

and ensemble averaging for this expression. A series of stationary inputs, each 

having the same spectrum, when applied to identical systems yields the same e^  for 

each system.  For the MWSE criterion to be of practical use, it is likewise neces- 

sary that when a series of stationary inputs, each having the same spectrum, is 

applied to identical systems the MWSE values for each system must be equal.  Thus 

EIMWSEI = MWSE and Eq 77 becomes 

MWSE = E[w(t)e2(t)] (78) 
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Since W(t) is constant when averaging across the ensemble at any particular value 

of t, then 

E[w(t)e2(t)l  = W(t)E[e2(t)] = W(t) a| (79) 

Because (for a stationary input environment) a^  is a constant, substituting 

Eq 79 into Eq 78 yields 

MV7SE = W(t)o| =  of(w) (80) 

Thus, minimizing MWSE for any specified deterministic W(t) is simply equivalent 

...   2 to minunizing a^- 

For the case where W(t) is a random signal statistically independent of €(t), 

the proof proceeds as indicated above, except that Eq 78 leads directly to 

MWSE = E(We2)  = E(W)E(e2)  =  (W)(e2)  =  (W)(e2) (8l) 

because the ensemble average of the product of two statistically independent 

variables is merely the product of their individual ensemble averages. 

It can also be shown that minimizing the more general MWEE criterion is 

equivalent to minimizing the appropriate f(e), because (by a similar proof to 

that given above) 

MWFE =  [f(G)](W) (82) 

It was shown in Chapter II that, for many input distributions, minimization of 

the very broad class of f(e) measures that are even and nondecreasing with |e| 

is equivalent to minimizing e^.  Combining this result with Eq 82 leads to the 

observation that in very many cases the MWFE criterion simply yields the minimum 

e2 system. 

65 



B.  THE "EWD-SIGMA" AND "PROBABILISTIC SQUARE ERROR" CRITERIA 

Zaborszky and Diesel first proposed the end-sigma performance measure in 

Ref. 22^ and developed it further in Ref. 27),  2k,  25, 26, and 27.  This measure 

is defined as 

<; = /  F[e(t), t, v-^,   •'•   vjp(t)dt 
^0 

(83) 

where the wavy line indicates averaging over 
an ensemble of inputs of different types 

The integrand contains a function of error, time, and various system parameters 

v-| , vo}   ■** Vj., and p(t), the probability that the output will be used at 

time t.  It is claimed (Ref. 22) that "this measure unites in a single concept 

the transient and steady states of the system operation as well as the largely 

neglected intermediate states.  None of these operating states is discriminated 

for or against, and because of p(t), each gets the weight due it because of the 

relative frequency of its presence at such times as the output is utilized." The 

generality of the measure makes it impossible to dispute this claim, and credit is 

certainly due to Zaborszky and Diesel for recognizing the need for a criterion 

which is compatible with both deterministic and random inputs.  However, to use 

the criterion, it must first be put into a concrete form.  The particular concrete 

fonns chosen by Zaborszky and Diesel will now be discussed, and validity, selec- 

tivity, and ease of application as performance criteria will be assessed.  In each 

of Ref. 22, 25, 2k,  25, 26, and 27 the measure considered was 

%(t)dt (84) 

where p(t) is independent of e(t) 

which Zaborszky and Diesel call the "probabilistic square error." This form is 

meaningful only for nonstationary situations since for stationary problems the 

probabilistic square error must be expressed as 
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;= J  P(t)[e(t)]2dt = ^^^J PT(t)[e(t)]2dt        .  (85) 

where p(t) = ^^^ i[u(t) - u(t - T)]p^ (t), 

and p,(t) is a general probability distribution 
function 

If p^ (t) is independent of e(t), where e(t) is a random function of time, mini- 

mizing %  is equivalent to minimizing the mean square error (as has been shown in 

the discussion of Murphy and Hold's criterion in Section A of this chapter. 

Thus the probabilistic square error criterion might be appropriate for non- 

stationary situations such as automatic landing systems or missile flight control 

systems in which the control system is required to operate for limited durations, 

and in which the ensemble average performance over a number of trials constitutes 

the basis for system assessment. 

Evaluation of the Probabilistic Square Error in the s-Domain 

Two procedures for evaluating 9 in the s-domain will now be given.  First 

the procedure suggested by Zaborszky and Diesel in Ref. 22 will be summarized, 

and then an alternative procedure which is often more convenient for simple 

systems will be described. 

It is shown in Ref. 22 that when each member of the ensemble is the same, 

L€(t)J  = L€(t)_]  and the probabilistic square error can be rephrased as 

lim C 
:—»-o I Jo 

00 

P(T - t)[e(T)] dT (86) 

-^, L    [P(-s)E(s)*E(s)] (87) 

Numerator and denominator polynomials are defined such that 

P(-s) = Iff} (88) 
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and 

E(s)*E(s)  = ^      - ■ ] (89) 

and it is demonstrated that 

A(p,)   J(p.) 

S=Pj_ 
^TA r / 1  (90) 

i B(Pi) [dL/ds]_^ 

where p. are the zeros of L(S), all of which 
are assumed to he simple and located in the 
left half-plane 

Alternative formulations of <; are given where these conditions cannot be satis- 

fied (Ref. 22). 

Example of Probabilistic Square Error Evaluation 

The following example is presented by Zaborszky and Diesel to demonstrate the 

computation process in general: a system described by the closed-loop transfer 

function 

c(s) _   s + 1 to^^ 

is subjected to an input, i"(t), where 

r(t)  = 1 + 2t (92) 

The probability function of the output is 

p(t)  = ^ (e-2* - e-5*) (95) 

This example was solved in Ref. 22 using the procedure described above, which is 

quite general but requires the zeros of L(S) to be known.  However, alternative 

methods are possible for an example of such simplicity.  (The procedure of Mishkin 

and Braun, p. 514 of Ref. 51, is worthy of mention; but this also requires 

knowledge of the zeros of L(S).) 



A method will new be demonstrated which has the advantage of obviating the 

need to find these zeros.  Substituting the p(t) of Eq 93 into Eq 8^ for 9 

^_y°'e-=='[.(t)]2dt-^J"e-5*[,(t)]\t (9*) 

f[>C[c(t)]^] 
s=2 

s=5 
(95) 

Stone (Ref. 52) has given general literal forms for X|/l^E(s)J In particular. 

L C B^ s + BQ 

s  + A, s + AQ 

^    B^s^ + (B^A^ + 2BQB-,)S + (2B^AQ + 2B§) 

s^ + JA, s^ + (2A^ + kP^)s + 4AQA^ 
(96) 

So, in the present example, 

E(s)  = |C(s) R(s)  = 
s + 2 s + 2 

s^ + s + 1 s^ + s + 1 
(97) 

Hence  the probabilistic  square  error is 

lof    s^ + 5s  + 10     "I 
5 [s2  + 3s2 + 6s + y 

s=2 

s=5 

20 24  60 
3 56 " 235 = 1-37 (98) 

which agrees with the result given in Ref. 22.  In addition to the fact that there 

is no need to evaliiate the zeros of L(s) using Stone's formulas, this procedure 

may also be more convenient for minimization, because general expressions for 

S^/SB"! , B^/SBQ, etc., can be derived.  However, for higher-order systems Stone's 

fornailas become exceedingly long, and Zaborszky and Diesel's procedure is to be 

preferred, particularly if a digital computer is available for determining the 

zeros of L(s). 
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Minimization of the Probabilistic Square Error in the Time Domain 

In Ref. 22 and 25, Zaborszky and Diesel discuss the evaluation and minimiza- 

tion of probabilistic square error using time-domain operations.  There is some 

correspondence between the given procedure and Wiener optimization, but the 

methods adopted by Zaborszky and Diesel to solve the equation corresponding to 

the Wiener-Hopf equations are essentially approximate, since the optimum weight- 

ing function is expressed as 

n 

E k^t^ 
i=0 

where n is predetermined 

The accuracy of the solution for the optimiun weighting function is thus limited 

by the largest value of n that can be handled using the computational aids avail- 

able.  However, time-domain synthesis is advantageous in the following respects: 

1. nonexponential forms for p(t) can be handled without analytical 
difficulties.  (in the example to be discussed, p(t) = 1/s for 
1 < t < 6, and is zero outside this range.)  As noted on p. Jl 5 
of Ref. 51, such a form would be analytically inconvenient for 
the s-domain procedures discussed above 

2. the physical significance of each step in the optimization 
procedure is readily apparent. 

For convenience of digital computer programming, in Ref. 22 the input, desired 

output, probability weighting function, etc., are approximated by sums of Legendre 

polynomials.  It will be demonstrated below that such a representation is not 

essential, and that the example of Ref. 22 can be worked by time-domain procedures 

not (explicitly) involving Legendre polynomials.  This simplification enables the 

physical interpretation of the time-domain approach to be kept clearly in sight 

throioghout the entire optimization procedure, thus fully exploiting the advantages 

of time-domain synthesis.  The error can be defined as 

J'OO 

h(tT)r(t - ti)dti (99) 

0 

where h(t-i ) is the system weighting fiinction 
(k is used rather than h to facilitate 
reference to Ref. 22) 
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with /• 00 vAAAArvA'\/\Ai /• 00 vAAAArvA'\/\Ai 

I p(t)62(t)dt :    , (100) 
Jo 

it can "be  shown  (Ref.   SJ)   that 

/•oo rco rco 
= ^C(iCd(0. °) - 2 J      h(tiHc^r(0. -ti) +   I      h(t5)dt5   I     h(ti )lfi.r(^3^ ^3 "  h)^h 

(101) 

where trr(t, T) 

♦=d=d''' 
T) 

i     (t, T) 

00 

p(t2 + t)r(t2)r(t2 + T)   dt2 -f Jo 

rco 

"   Jo    ^^^2 + t)c^(t2)c^(t2 + T)   dt2 

XOD ■       . J. 

p(t2 + t)cj^(t2)r(t2 + T)   dt2 

The minimization of 9  is  effected by equating its first variation,   S^,   to  zero, 

which leads  to 

/•oo 

/      ^ Jo 
h(t^)^^^^(t,   t  -  ti)dtT     =    %^^{0,   -t) (102) 

The resemblance of Eq102to the Wiener-Hopf equation should be noted.  However, 

in the Wiener-Hopf equation, the term corresponding to ^^^^  is a function of 

t - t-| only, so the techniques that have been evolved for solving the Wiener-Hopf 

equation cannot be applied to Eq 102. 

Zaborszky and Diesel solve Eq102by approximating k, i|f„„, and i^  with sums 
xi      C{jr 

Of orthogonal functions such as Legendre polynomials.  This yields n simultaneous 

linear equations, where n is the order of the highest Legendre polynomial employed. 

In general, the "optimum" weighting function so obtained is approximate, in that 

the accuracy of the approximation is limited by the magnitude of n, which in turn 

is limited by the capacity of the computational aids available. 
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An alternative time-domain procedure for obtaining an n'^^-order polynomial 

approximation to the optim\xm weighting fiinction will now be outlined.  The pro- 

cedure is most easily understood by considering an example, and the problem 

given in Ref. 25 will be used for this purpose. 

The example discussed in Ref. 23 consists of the optimization of a system 

having a weighting function, h(t), such that the output will be a prediction of 

the input 1 sec from the present time.  The input is 

r(t) = u(t)[l + 0.5t + 2t2] (103) 

The desired output, c^,  is thus r(t + I), which becomes 

C(i(t) = u(t)r3.5 + ^-St + 2t2] (I0l|) 

The probabilistic square error criterion is used with equal weight attached to 

all outputs occurring between t = 1 and t = 6 sec, and zero weighting is given 

to outputs occurring outside this period, i.e., p(t) = (l/5)L^("t- l) - u(t - 6)J. 

Hence, the quantity to be minimized becomes 

? = J  ^[u(t - 1) - u(t - 6)][c(t) - C4(t)]^dt        (105) 

The actiial output, c(t), is given by the convolution 

c(t)  =  I  h(T)r(t - T)dT (106) 
Jo 

Following Ref. 23, h(t) will be approximated by the expression 

h(t)  = kQ + k^t + kgt^ (107) 

Strictly interpreted, this would give an unstable weighting function, but because 

the probability that the output will be used is zero after t = 6 sec, this point 

is of academic interest only. 
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Performing the convolution, 

c(t)     =     j      (kQ + k^T + }^^T^)\^   + 0.5(t -  T)   + 2(t  -  T)2]dT 

=    k^ 

A necessary condition for <; to be a minimum is that 

which must he satisfied for n = 0 and 1 and 2 

This is simply evaluated by noting that the differentiation can he brought under 

the integral sign.  For example, with n = 0, Eq 109 is equivalent to 

3 

dt = 0 (no) 

This gives the solution of Bq/Skg = 0 in terms of kQ, k-], and kg. 

Evaluating this integral and the corresponding equations for 

Sk7 - °'     Sk^ - ° 
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leads to a set of three sirmiltaneous eqixations for ^Q,  k-j ,  and k2.  The corre- 

sponding equations derived by Zaborszky and Diesel are^ in matrix form. 

[ 
k,392.06 -J+,l65.i^3 1,41 2.35 "ko" 8,829.85 

5,206.65 13,815.24 -4,543.13 h = -29,021 .61 

5,538.83 3,188.88 1,335-96. -kp. .     7,912.02 

(111) 

These equations are mildly ill-conditioned; this becomes more apparent when the 

coefficients of kg are made unity.  The matrix is then 

1 -0.964 +0.3215 "ko" 

1 -0.908 +0.2987 kl = 

1 -0.901 +0.3775 . -kp- 

2.01 

1 .908 

2.256 

(112) 

For a weighting function as simple as that considered in Eql05, the ill-conditioning 

is unlikely to be troublesome, but it will probably become more pronounced as the 

order of the approximation to h(t) is increased.  However, higher-order weighting 

function approximations will require digital computers to evaluate the simultaneous 

equations, and the availability of digital computers will ease the difficulties 

associated with ill-conditioning. 

The time-domain synthesis procedure presented in Ref. 23 is essentially directed 

towards digital computer eval\iation, and differs from the technique described above 

in that p(t), r(t), C(j(t), and h(t) are represented by sets of orthogonal func- 

tions.  The resulting expressions are fairly complicated, but can be split into 

two parts, one of which is invariant with p(t), r(t), and C(^(t), so that this part 

can be retained throughout a range of problems.  The entire programming procedure 

is tabulated in Ref. 25, and an example is given.  An extended description of how 

a homing aircraft flight control system can be reduced to a form suitable for 

9-optimization is given in Ref. 27.  In Ref. 26, a continuous control system is 

optimized subject to a constraint of acceleration limiting on the output, c(t). 

The resulting nonlinearity is avoided by the artifice of constraining the rms 
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output of a linear substitute system (actually the original system with the non- 

linearity removed) through the use of Lagrange multipliers.  In Ref. 2k-  the 

probabilistic square error of a sampled-data system is considered, and extensive 

tabulations are given of the required digital programming procedure. 

Assessment of the Probabilistic Square Error Criterion 

It is hardly possible to assess such a generalized performance measure as 

/  p(t)e2(t)dt 

without making a number of arbitrary choices for p(t).  In the present generalized 

study, no sufficient basis exists for such a choice, but it is at least arguable 

that in specific applications this choice will be easily made.  Accepting this 

premise (together with the consequence already mentioned that for some p(t), 

unstable systems may result from the optimization procedure), it appears that the 

probabilistic square error criterion and its generalized form, the end-sigma 

criterion, are quite suitable for the optimization of nonstationary systems.  The 

present report has attempted to indicate ways in which the criterion may be 

handled using desk rather than digital computers.  In particular, a suggested 

procedure for s-domain synthesis of low-order systems has been discussed.  For 

the analysis of flight control problems, it is usimlly permissible to replace the 

act\ial flight control system by a low-order equivalent system (page 7), and the 

use of this substitution should render Zaborszky and Diesel's criterion suitable 

for "pencil and paper" studies. 

C.  GLOVER'S AMPLITUDE-WEIGHTED PERFORMANCE MEASURE    i - 

In Ref. 21 Glover reasoned that "the criterion of least mean square error 

has the disadvantage that large effects are weighted quite heavily even when 

they occur at a time when the variable under consideration is large." He further 

reasoned that usually the error expressed as a percentage of the desired output 

is of more interest than is the absolute error, and therefore proposed a perform- 

ance measure in which the error time-weighting function contains the amplitude 

of the desired output.  For convenience, the performance measure will be referred 

to as P.E. because the integrand involves error expressed as a percentage (or 
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fraction) of the desired output: 

"" - ""^£M? -" <"" T-*-oo 

£(t)_ 
0]^ + 52 

where €(t) is the error 

c^(t) is the desired output 

6 is a constant which dictates the 
lowest absolute accuracy of interest. 
It prevents the integrand from becom- 
ing infinite whenever C(j(t) =0. 

Glover used the criterion of minimum P.E. with the restriction that only 

linear time-invariant systems would be considered.  He showed that with uncorre- 

lated Gaussian signal and noise, the optimiim linear system is merely the Wiener 

system multiplied by a constant.  Glover's analysis is outlined below, and an 

extension is then derived for fixed-order (Phillips-type) optimization.  The 

principal conclusions of this section are: 

1. because the Glover optimum linear system is so simply 
related to the Wiener system, it suffers from the 
possible disadvantages of the latter, e.g., poor 
transient response 

2. for Phillips-type optimization. Glover's performance measure 
tends to be even less selective than the minimum mean square 
error criterion. 

General Expression for P.E. and the Optiinum Linear System 

Glover's procedure for the optimum linear system will be outlined briefly 

below, while simultaneously manipulating P.E. into a form suitable for Phillips- 

type optimization. 

The expression for P.E. (Eqllj) can be written 
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P.E. 

2                        2 
^d -  2c<iC + c 

14-^'   J 

where      c^    =    f (t + TI) 

c    =    J^°° h(x)r(t - x)dx 

h(x)     =    the  impulsive resp 

{^^k) 

linear physically realizable system 

Wow let W(t) = —5  he the weighting function on e^ (Eq 113) • Suhsti- 
[f(t + Ti)]^ + 5^ 

tuting into Eq 11^ the expressions for c,^^, c,  and W yield 

P.E.  = c 
J»co  

h(x) r(t - x)f(t + Ti)W(t) dx 
n '0 

• 00 /.OO J»(JU /•UU 

I   h(x)h(y) r(t - x)r(t - y)W(t) dxdy     (1I5) 
0 •'0 

Glover's definition of a "weighted correlation function," 

%UV(TI , Tg)   =  U(t + T-|)v(t + T2)W(t) (116) 

allows P.E. (Eq1l3 to be expressed compactly as 

J/.CD 

I        tl(x)Rwrf[-(x   +   Tl),    0]dx 
0 

JZ-CD   /.CO . ' 

I h(x)h(y)l^     [-(x + Ti),   -(y + Ti)]dxdy ^117) 
0    •'0 
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Variational calculus methods^ as In the Wiener derivation, are used by Glover 

to establish that for P.E. to be a minimum. It Is necessary that h(x) satisfy the 

Integral equation 

R, Wrf 

J-oo 

h(y)Rwrr[-(^ + Ti), -(y + Ti)]dy 
0 

(118) 

Reference 21 Indicates that the solution of the Integral equation would be 

immensely simplified If the weighted correlation function could be expressed in 

terms of the ordinary correlation functions.  This will now be accomplished using 

the ergodlc theorem to express R^^^(T^, Tg) in terms of ensemble averages. 

Determination of the Optimum Weighting Function 
for Gaussian Input and Noise 

Glover expresses the weighted correlation function as ensemble averages by 

the relation 

00 

^uv^^l^ ^2)  = /// zZ^^^^"^'  ^'   c^)dudvdc^ (119) 
-co c^ + o 

where p(u, v, c^)   is the joint probability 
density function, and u and v are the 
general variables used in Eq 116 

Substituting this form of weighted crosscorrelation function into Eq 1l8 leads to 

solutions for the optimum weighting function when the distributions involved can 

be specified analytically.  For Gaussian input environments, there are three 

cases of interest: 

1. zero noise 

2. imcorrelated signal plus noise 

3'     correlated signal and noise 
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Zero Noise. For this case^ Glover obtains 

%ff('^l^ Tg)  = kTpff(T^)pff(T2) + kgPffCT^ - Tg)               (T20) 

where    k.  = 1 - Vo — + ^^     ^^^^  r= 

kc. = W^ I ^ 1 e^^/^'^f erf c -^ ^2 = if(^) 

P^fCi)  = normalized autocorrelation fiinction 
of the signal (as in Eq 125) 

Glover does not present the rather lengthy manipulations required to obtain 

Eq 120; however, it has been verified independently by the present authors. 

The optimum system found from Eq 11 8 and 120 is the ordinary Wiener system 

multiplied by a constant, i.e.. 

where   k j-(t)  = optimum weighting function 

k = B + (1 - B)jr" h^(y)Pff(y + Ti)dy 

A 
B = 

T fl/2)(5/af)^ 

= Vi erfc 
V^ ^f 

0^ = variance of signal 

IVrCt)  = Wiener optimum predictor weighting 
function 

P£^(y + 7))  = normalized autocorrelation function 

erfc X = the complementary error function 
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Signal Plus Uncorrelated Noise.  The general form of the solution for n(t) = 0 

also applies to the case where n(t) f  0, providing that n(t) = 0, and that there 

is no crosscorrelation between signal and noise.  The optimiim weighting function 

is again of the form of Eq 121 where now hy(t) is the Wiener weighting function for 

the given signal and noise. 

Correlated Signal and Uoise.  Glover states that attempts to obtain similar 

solutions both when the noise and true signal are correlated, and when using other 

types of statistics, lead to the necessity of solving higher-order transcendental 

equations, which can probably only be solved by recourse to machine computations. 

It is a striking fact that for Gaussian inputs and noise, the optimum system 

is simply the Wiener system multiplied by a constant (Eql2l).  Thus, if the optimum 

Wiener system for a given Gaussian environment is unsatisfactory due to poor 

transient characteristics, replacing the e^ criterion by Glover's criterion will 

effect no significant improvement.  The corresponding relationship, if any, for 

non-Gaussian environments has not yet been determined due to the great difficulties 

associated with general analytic evaluations of Eq 117 and 118. 

Glover's Criterion Applied to Fixed-Order 
Systems (PhiHips-Type Optimization) 

General expressions for the optimum P.E. system of fixed-order (Phillips 

system) will now be derived.  (This problem was not considered by Glover.)  A typi- 

cal example is evalioated, and the P.E. performance measure is shown to be even less 

selective than the minimum mean square error criterion. 

Zero Koise. Using the expression for %ff (T-] , T2) given by Eql20, and insert- 

ing it into Eq 115, gives the P.E. as 

k^Pj.-p(0)pff(0) + kgPff(0)  - 2 J  h(x) Pff.(-x)P-ff(0)k-, + Pj^(-x)k2 

.00 /.CO 

+ J   h(x)h(y)|pf-f(-x)P|.f(-y)kT + Pff(y - x)k2 dydx  (l22) 
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The integrals are merely convolutions evaluated at zero, e.g., the second 

term is _    , 

-ZZo  ^^^1 + ^2)J  h(x)Pff(t - x)dx (125) 

Using the following properties of normalized autocorrelation functions, 

Pff(O) 

P^J(T) 

= 1 

Rff(T) 

(12^) 

(125) 
The P.E. becomes 

P.E. 
(k^ + k2)Rf.f (0) ^{k^   +  k2)Rfc(0)  k R^c(°)  ^2^cc(0) 

1=   + -L^  +-^^   (126) 
2 

Of 
2 

This can be rewritten by adding and subtracting i^iRcc(o) cc 
2 
Of 

(ki + k2)[Rff(0) - 2Rfc(0) + Rcc(O)] + ^i 

P.E. 

[Rfc(o)]' 
Rcc(O) 

(127) 

a| P.E. (k-| + k2)e2 + k I[H;^^ - Rcc(o)J (128) 

where e^ is the mean square error for 
this (zero noise) case 

It can be seen from Eq 128 that in general the optimum system will not be a 

constant times the minimum e^ system (unlike the case when the system order and 

form were left free during the minimization). This can be seen from setting 

SP.E./SO^ = 0 where ct^ is a variable parameter of the system. 
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Signal Plus Uncorrelated Noise.  Equation 128 for P.E. becomes, in this case. 

a^  P.E.  = (k^ + k2)6^ + k^ 
^R?,(o) 

u 4 Rcc(O) - ^c^Cn^O) i (129) 

where  e^ is the mean square error for the 
particular uncorrelated signal and 
noise present 

Re c (0)  = 3- I. 
00 

00 
|H(jtD) i <l5_„(a3)dcD 

Again it can be seen that in general, minimizing P.E. will not lead to the same 

parameters of H(JCJD) as minimizing e^. 

Signal Plus Correlated Noise.  The expression for P.E. for this case will be 

similar to those of the previous cases.  The result will not be detailed here 

because the expressions are very lengthy.  However, the form of the P.E. expres- 

sions has been studied, and, as in the case of signal plus uncorrelated noise, 

it is such that the optimum P.E. system is in general not simply related to the 

optimum e^ system. 

Example of Phillips-Type Optimization Using Glover's Criterion 

As an example of Phillips-type optimization, consider a second-order system, 

H(s)  = -^ ^  
s^ + 2^s + 1 

(130) 

with a signal input spectrimi 

^^ a"^ + 

*nn('") 

a*- 

0 

0^ 
(131) 

The variation of Glover's performance measure for this system is illustrated in 

Fig. 22.  In Fig. 23, Glover's criterion is directly compared with the criterion 
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of minimimi e"^. This comparison has been effected by combining the representa- 

tive &/a^ =  1 .0 graph of Fig. 22 (which corresponds to 6 = nns input amplitude) 

with the a = 0.25 graph of Fig. 5^ which corresponds to an input cutoff 

frequency of 0.25 of the system undamped natural frequency. Figure 23 shows 

that Glover's criterion is less selective than the minimum e^  criterion. But 

the selectivity of the e^ criterion is only barely acceptable.  Therefore, 

Clover's criterion—due to its poor selectivity—must be regarded as unsatis- 

factory. 
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CHAPTER IV -  '■    - 

THE GENERALIZED ERROR FUNCTION 

This chapter is primarily concerned with the generalized error function 

(G.E.F.) which, for stationary random inputs (zero noise), is defined as 

/+T /•+T 
Kt, .)]=^dt = ,11 if   [r(t - .) - c(t)]^ 

i J-T 
(132) 

The G.E.F. has a compatible form for deterministic inputs, which Ref. 31 denotes 

by E^: 

Et 
/•oo /-oo 

=  /   bit,   T)]^dt B  /   [r(t - T) - c(t)]^dt        (133) 
Jo Jo 

As defined in the Introduction, compatibility implies that E-^  and G.E.F. will be 

numerically equal for any given linear constant-coefficient system, provided that 

the appropriate deterministic input used in computing E-j^ is the transient analog 

of the random input.  It has already been shown (p. 1^) that [G.E.F.]]   and 

L-^tJ T-n ^^^  compatible for the case of a unit numerator second-order system when 

the random input has the power spectrum <I>j,j.(a)) = ^ /{o? +  a^) and the deterministic 
-at 

input is e  .In this chapter it will be shown that the G.E.F. and E-j^ are com- 

patible for all linear constant-coefficient systems, i.e., the transient analog 

of a random input does not depend upon the system to which it is applied.  This 

is demonstrated in Section A below by expansion of the analysis of Benedict and 

Rideout (Ref. 29), who considered only the case of zero noise.  Section B derives 

general transient analogs for both uncorrelated and correlated signal and noise 

inputs.  These results are used extensively in the third part of the chapter to 

calculate and form an assessment of the G.E.F.  Since, for T = 0, G.E.F. = e2^ 

the transient analog concepts apply equally well to the optimization of systems 

using the mean square error criterion. 

A.  TRANSIENT ANALOGS (ZERO NOISE) 

For the G.E.F. and Et performance measures to be compatible, the transient 

analog input must have an energy spectral density that is the same function of 
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frequency (except for the units) as the power spectral density of the random 

input signal.  This relationship was first noted by Schultz and Rideout (Ref. 28). 

A proof is given below. 

The Generalized Error Fiinction for either random or detenninistic inputs can 

be thought of as the mean square error where the error is defined in Fig. 2k. 

r(t) 
H{s) 

c(t) 

~4 
e-^^ 

r(t-T) 

(t) 

Figure 2k.    Block Diagram for Computation of the G.E.F. 

For a transient deterministic input, r^, commencing at t = 0, E-^  (Eqljj) can 

be expressed as 

Et(T) 

/•oo 

Jo 

/•oo 

Jo 
t - T)] dt - 2/  rt(t - T)ct(t) 

/•co 
dt + I   [ct(t)]' 

Jo 
dt 

(15^+) 

The corresponding expression for the G.E.F. (Eq 132) for a stationary random 

input, r,  with output c,   can be written in terms of auto- and crosscorrelation 

functions as 

G.E.F.  = R™(0) - 2R_(T) + R„„(0) rc cc^ (155) 

It will now be shown that Eq 1 5^4- and 1 55 are identical term by term, if the 

deterministic input, r-j.(t), is the transient analog of the random signal, r(t) 

(the energy spectral density of r^(t) being equal to the power spectral density 

of r(t)).  Talcing the last term first, by Parseval's theorem. 

[ct(t)] dt = 2^ I   Ct(s)Ct(-s)ds = 2^ I   H(s)R^(s)H(-s)Rt(-s) 
0 ''   J-jCO 'J J-jCD 

ds 

(156) 

where   H(s)  = the system transfer function in Fig. 2k 

Rt(B)  = /:[rt(t)] 



Substituting s = jca,  Eq 136 can be written in terms of the input energy spectral 

density as 

/•QO     P       roo        ^ 
I  tt(t)] ^^    =    -t   I      H(jGo)H(-jco)^   (a3)dm (l 57) 

where ^    (CD)  = Rt( J<^)Rt(-J'") ^ "the transient 
"t "t      input energy spectral density 

(p. 102 of Ref. 50) 

The last term of the G.E.F. (Eq 135) can be written as 

roo 1  r°° 
Rcc(O)  = 2^ I ^cc(^)d(^    = ^  I  H(jcD)H(-joD)<I>j.r(m)da)    (138) 

y-00 J-00 

and if * (CD)  =  (*   (CD) (139) 

then from Eq 1 37 and 1 38 it can be seen that 

foo „ 
Rcc(O)  =  I  [ct(t)] dt (1^0) 

^0 

Similarly, the first terms of Eq 13ij- and 1 35 are equal. 

[rt(t -  T)]%t    =    sijj.     [e"''X(^)]&^%(-^)]<is (1^1) 

I        Rt(s)Rt(-s)ds i^h2) 
2nJ   .   - •-JCO 

1     f^ 
=   i-^ j_J^^^^{a.Hc. (143) 

and, if the energy spectrum of Tj^it)   is the same function of OD as the power 

spectrum of r(t). 
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/•CO „ roo 
I       [rt(t  -  T)]^dt    =    ^   I     %^ia,)Am {^hk) 

The middle term of Eq 1 3^  can be shown to be eqiial to the middle term of Eq 1 35 

by using the following version of Parseval's theorem (Ref.  6, p.  ^3): 

/•oo /-jco 
I      XT(t)x2(t)dt    =    -^   I        XT(-s)X2(s)ds (li^5) 

Jo "^ J-joo 

where    Xi (s)  =5^[xi(t)] 

X2(s)   =3='[x2(t)] 

Substituting r-j^(t -  T)  for x-j (t)  and c-j;(t)  for X2(t)  yields the middle term of 

Eq 134 as 

roo T      fjco 
I       r^(t   -  T)c^(t)dt     =    2^1   I e^%(-s)Ct(s)ds {^k6) 

Jo "^ J-joo 

where    X-j (s)   = R^(s)e 

X2(s)   = Ct(s) 

Equation 1 kS  can be written as 

/•oo rjoo 
I      r^(t -  T)ct(t)dt    =    2^ H(s)Rt(s)R^(-s)e^Sds (li^T) 

^0 '^  J-joo 

/•oo 
Substituting s = jco, "    2rt   I      ^^j'^^^r r ('^)s"^^'^"^ 

Mow the middle term of Eq 1 35  is  (by definition) 

{^kQ) 

- ^r ,'0O 

-GO 

and since <l>(ja))   = H(ja3)<J>    (03), Eq 1^9 becomes 
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Rrc(^)  = 2n I  ^ 
J -co 

H(jCD)<J>„„(cD)eJ^da) (150) 

If the energy spectrum of r^(t) is the same function of frequency as the power 

spectrum of r(t), then Eq 150 and ^k-8  are equal, i.e.. 

/. 

00 

r^(t - T)c^(t)dt = R^C(T) (151) 

Eq-uations 15^ and 155 are then identical term "by tenn for all H(s) if r^(t) is 

the transient analog of r(t), i.e., if <5j,-j,(a3) = 0   (OD) . 

A transient signal whose energy spectral density is the same function of 

frequency as the power spectral density of any stationary random signal can he 

obtained as indicated by Fig. 25 where the white noise generator has unit power 

per cps. 

white noise 
HT(S) 

Kt) 

5(t) 
H^(s) 

:(t) 

Figure 25. Generation of Transient Analog, r-t(t) 

The random signal spectrum is 

<I>^j.(cu)  = HT(j(jD)HT(-jaD) (152) 

while the transient signal is 

rt(t)  = h^Ct) 

Rt(s)  = HT(S) 
(153) 

and therefore its energy spectral density is 

'^rtrt^"')  = Rt(jcD)Rt(-jcu)  = H, (ja))Hi (-jai) i^^k) 
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Before proceeding to describe transient analogs for signal plus noise inputs 

(correlated or uncorrelated)^ two minor points must be noted. Throughout the 

above analysis it has been tacitly assumed that the value of x Is fixed.  In 

fact, the selection of T is not a simple matter.  The reader may also have 

observed that for an integrated white noise input (which has a step as its 

transient analog), Eq 1 5^ cannot be evaluated directly because the integrals on 

the right fail to converge.  This obstacle can be easily circumvented.  Discus- 

sion of both these details is delayed until later in this chapter to avoid too 

great a digression from the present topic of transient analogs for signal and noise. 

B.  TRANSIEOT ANALOGS FOR UECORRELATED SIGNAL AHD NOISE 

The G.E.F. for a system subjected to uncorrelated signal and noise can be 

obtained very simply by applying transient analogs of the signal and of the noise at 

widely separated tlmes^ as will now be shown. 

s(t) or st(t) 4 
n(t)or n^(t) 

r(t) 

Figure 26. Block Diagram for Uncorrelated Signal and Noise Inputs 

For the system illustrated in Fig. 26,  the error power spectrum is (from p. 50) 

%M)     =     h - H(ja))| * rcD) + |H(ja3)|X.(cD) ss' nn" (155) 

Zero prediction or lag (T = O) will be assiomed to keep the analysis brief, although 

there is no essential difficulty in extending it to cover the case of T ^ 0. 

With T = 0,    - 

'00 

(156) G.E.F.  = e2 =  '' 
2n 

Joo 

■00 

*gg((D)dCO 

The transient analog of the input will now be shown to consist of the transient 

analog of the signal, s.t;(t), plus that of the noise, n-t(t), where n^(t) is applied 
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to the system only after the error transients produced by s-t(t) have become effec- 

tively zero.  Therefore, the lE^ for these transient signals is 

IE2 /  [ei(t) + €2(t - T)] dt (157) 
Jo 

where  e-j (t)  is the error due to the signal transient analog 
input, s^(t) applied at t = 0 

e2(t - T)  is the error due to the noise transient analog 
input, n-t^(t) applied at t = T 

T is much longer than the system settling time 

Since e2(t - T) only occurs long after the initiation of e-|(t), there will be no 

crossproduct; therefore. 

IE2 
fT /-oo 

= /  [6i(t)]"'dt + /  [€2(t - T)]^dt (158) 
JO JT 

The first and second integrals are approximately IE? and IEI; therefore. 

/•OD      rco 
IE2 =  /  e2dt + I  e2dt (159) 

'0    '2 

and using Parseval's theorem,  this can be written as   (defining Ei(s)  = /" |e-(t)|) 

1   P°° 1   rj°° 
=    2^/        ET(s)ET(-s)ds + 2^   I        E2(s)E2(-s)ds (160) 

"^ J-jco ^ y-joo 
lE^ 

E-, (s) and E2(s) can be found from the definitions below Eq I57, and Fig. 26. 

|E-](S)|  and JE2(s)|  can then be expressed in terms of the signal or noise 

energy spectral densities. 

t t 

Equation 160 becomes 

lE^ 

Ss^s^^^)  = S(S)S(-S)  where  S(s)  = ^ [s^(t)] 

Sn n ^""^  = N(s)w(-s)  where  U(s)  = ^ [^t^*)] 
(i6i) 

^"^ -J 
.^[h   -  H|      5stst      +|Hr^ntnJds (l62) 
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Since ^gg = S. and 4>r ,   the Integrand in Eq 1 62 eqioals the right side ss  "Jstst     nn --^ntnt __ 

of Eq 155 term by term^ and therefore lE^ =  G2_ 

Example of Transient Analogs for Uncorrelated Signal and Noise. A random 

signal having the power spectrum <I>ss(m) = l/(a2 + a?)  has a tiansient analog 

^t(^)   -  ^"^ [because the energy spectral density of this transient is 

|S^(s)S-t^(-s) I    = l/(a2 + a:^)].  Thus, the e2 produced by a stationary random 
b—JOJ 

signal, *gg((D) = l/(a2 + a^),   in the presence of white noise, *j^(flD) = 1 ,  can be 

obtained by applying the inputs, st(t) = e"^"'", and a delayed unit impulse, 

n-(^(t) = S(t - T) , and integrating the error squared of the transient response. 

The shaded area of Fig. 27 indicates the parts of the error response that con- 

tribute to the total lE^. 

Transient analog 
of signal 

-at 

Transient  analog 
of   noise 
nj= S(t-T) 

"^sr*^ 

Figure 27.  Transient Analogs for Signal and Noise 

C.  TRANSIENT ANALOGS FOR COERELATED SIGNAL AND NOISE 

The transient analog for correlated signal and noise is the ti^nsient analog 

for uncorrelated signal and noise plus an additional transient input to a modified 

system that simulates the effect of the correlation.  This modified system can be 

varied independently of the signal and noise spectra to determine the effect of 

the crosscorrelation on the G.E.F. 

For the system of Fig. 26 with correlated signal and noise (Ref. 50, p. 239), 

the error power spectral density is 

*ee =  D - H] *33 + [H] *^^ - (1 - H^)H* ^ - (I - H)H> nn sn ns (163) 
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where the following abbreviated notation is used to keep the expressions reason- 

ably concise: 

H = H(ja)) <D^s = *ns(ja)) (i64) 

E^(ja3)  = H(-jCD) 

*ns =   *ns(j^) 

*ss =   *ss("^) 

^nn =   *nn("^) 

CO 

and the mean square error is 

^^ = ^ I ^eei"^)^^ 'l (165) 
J-co 

The first two terms of Eq 1 65 do not involve the crosscorrelation, and their 

transient analogs can be obtained by the procedure that is described in Section B. 

The contribution of the last two terms of Eq 163 to "e^ can be expressed as 

follows: 

'^^ = -s 
/•CD /"oo 

(1 - H*)H*g^da) - ^ I  (1 - H)H*$^^dcD       (166) 
J-oo y-oo 

It is ass^Jmed that (J'gj^Cja)) =<I)^g(-joD) is a rational fiinction of jm, i.e., 

^sn^j"")  = Ha(jcD)H^(-joD)  = H^ '   .. (167) 

where  Hg^  is a system transfer function composed of the 
left-half-s-plane poles and zeros of 452^(^05) 

H-j^  is similarly composed of the right-half-s-plane 
poles and zeros of <l> (jo^) 

Inserting Eq 167 into Eq 166  and substituting s = jcD yields (after rearranging 

terms) 

-7:       1  /•J°° T  /•joo 

""'  =  ~ 2^ I . ^^ - H")HXH^3 - ^ ^K\('   -  H)ds     (1 
j-jco ^ J-joo 

Using a version of Parseval's theorem (Ref. 6,  p. k-^), ':' 
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/•oo 

Jo 
x-, (t)x2(t)dt 

J-joo 
X^(-s)X2(s)ds 

where    X-] (s)   = >C [x-] (t)J 

X2(s)   = X[x2(t)] 

it can be  shown that Ae^ is  twice either term in Eq 1 

(169) 

Ae2 
2nj 

( 

joo 
(1   -  H*)H^HjjHds 

JOO 
(170) 

This can be seen from Eq 1 68 and 1 69 .  In Eq 1 68 the integrands are complex 

conji:igates.  Identifying the asterisked quantities (1 - H*) and H^ in the first 

integrand of Eq 1 68 with X-] (-s) and the remaining quantities with X2(s) reveals 

that the first integral of Eq 1 68 is equal to the left side of Eq 169.  A similar 

identification can be made for the second integral of Eq 168.  Therefore, 

these integrals are equal.  Equation 17O for Ae^ is now in a form suitable for 

computation by means of operations upon transient quantities. A circuit suit- 

able for the synthesis of Ae2 is illustrated in Fig. 28, where transient inputs 

A,  Hg_(s) and JZ    ^-]^(s)  are generated simultaneously and fed throiogh systems 

having tiunsfer functions H(s) and 1 - H(s).  The res\ilting signals, ea(t) and 

e-^{t),  are multiplied and integiB-ted to give Ae2.  This can be seen by inspec- 

tion of Fig. 28 and use of Eq 1 69 to yield Eq 170.  Kote that since Hg^(s) and 

H-5(s) both have left-half-plane poles only, there is no problem with regard to 

stability or physical realizability of this circuit. 

- 28{t) 

Ha(s) 

Hb(s) 

H(s) 

l-Hls) 

1 
Multiplier 

J 
€«€ a^b 

l/s 
A^: 

Figure 28.  Circuit for Generating Contribution to e^ 
Due to Crosscorrelation of Signal and Noise 
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Etkin (Eq 2.17 through 2.19 of Ref. kk)  derives an incorrect general fonn 

for the transient analog of a system subjected to two concurrent stationary 

random inputs having power spectra <&■, (CD) and^oC^)? ^^^  a cross spectrum*, o(ji^) • 

(These could, of course, represent correlated signal and noise.)  His analysis 

is valid only when 

Rtg(ja3)4^(jm)  =  2Tt4>^g(joD) (171) 

There is no reason why Eq 171 (which corresponds to Eq 2.19 of Ref. k-k-)   should 

be satisfied in general, since it says that the cross-spectrum between signal 

and noise always has the same left-half-plane poles and zeros as -the noise 

spectrum and the same right-half-plane poles and zeros as the signal spectrum. 

It is, however, physically possible, and indeed probable, that the cross-spectrum 

has poles and zeros not contained in either the signal or the noise spectra. 

D.  EVALUATION OF THE G.E.F. 

Having discussed the transient analogs associated with the G.E.F. (Eq 152), 

the measure itself will now be examined.  Its compatible criterion (Eq 1 33) 

/•CO 2 
minimum E-t-(T)     =    minimum   I       [r(t  -  T)   -  c(t)]   dt (l 72) 

Jo 

was originally considered by Algrain and Williams (Ref. 52) for the optimization 

of amplifiers subject to step inputs.  Schultz (Ref, 48) and Schultz and Rideout 

(Ref. 28) continued the Investigation of E-f^(t) and linked it directly to the 

G.E.F.  The first use of the G.E.F. for random Inputs was by Lee and Wlesner 

(Ref. 5^), further discussion being given by Spooner and Rideout (Ref. 50). 

Minimijm G.E.F. can also be regarded as an alternate form of the Wiener optimum 

predicting (T] > O) or lagging (T) < O) criterion (see p. 20 ) : 

minimum  ,. ,. 
predicting 

lim_LrT 

T-OO2TJ_^ I 62 = minimum ^_^^ I  [r(t - T]) - c(t)] dt    (175) 

or lagging 

The G.E.F. is thus very similar to the e2 for random inputs, and Et is closely 

related to lE^ for deterministic inputs. Much of the following section can be 
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interpreted as a discussion of e2 for cases where the predicting or lagging time, 

T],  eqiaals i,  a time constant which can be chosen freely. 

As has been shown in Ref. 1 and 3^,  the IE performance measure exhibits 

poor selectivity for step inputs, i.e., the lE^ of the optin^jm system is only 

a little less than that of a wide range of off-optimum systems. Fig. 5 

demonstrates that the minimum e^ criterion is equally unselective for a typical 

random input.  It has been suggested that the G.E.F. might achieve greater 

selectivity because it compares the output with the delayed input, and the 

system is therefore not penalized for unavoidable initial errors.  However, the 

principal conclusions of this section are 

1 .  the G.E.F. is actually little more selective than the mean 
f.-       square error criterion 

2.  difficulties frequently occur in selecting the value of T 
to be used 

5.  the G.E.F. does have some merit in that it possesses com- 
patible forms for both stationary random and deterministic 
inputs, and largely because of this advantage, studies of 
modified forms of G.E.F. may be worthwhile 

To use the generalized error function, it must be put into concrete form by 

suitable choice of T.  This problem will now be discussed. 

Selection of T 

This choice could be related to some of the parameters of the system, but 

perhaps the simplest alternative is to make the time delay, T, equal to the 

delay time, t^. 

c(td)  = ^ c(oo) {^'Jk) 

where c(oo) is the steady state value of the 
system step response, and t(i is defined as the 
time to achieve 50 percent of the final value 
of the step (indieial) response 

This choice also minimizes the E^(T) for a step input, as will now be shown. 
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/•oo ' p 
Et(^)     =     I       [r(t  -  T)   -  c(t)]   dt,   for r(t)   = u(t) 

Jo 

=      r°°([r(t   -   T)   -   r(t)]   -   [c(t)   -   r(t)])   dt 

(175) 

(176) 

r°°[6(t)]2dt +  f ^[r(oo)j2dt  - 2[r(oo)]r 
Jo Jo Jo 

[6(t)]^dt +  I     [r(oo)j2dt  - 2[r(oo)]|    €(t)dt (177) 

Differentiating with respect to  r, 

-j^    =     [r(co)]''  -  2[r(oo)]e(T)     ^^ (178) 

.'. For E-(^(T) to be a minimum, '^ ■ 

e(T)  = i r(co)       - ;      :     ■ (179) 

E-t(T) therefore has a minimum when T is equal to t^, the delay time.  (in Ref. 28 

this fact is demonstrated by use of a rather cumbersome geometric argument.) 

Note that the determination of T = t|3_ is generally impossible by analytic means, 

since t^^  is the solution of a transcendental equation, e.g.; for a third-order 

response, Eq 179 becomes 

Ae"^^""^ + Be'^^td ^.^ ^^^^ + i)  = 1 (180) 

T must therefore be chosen by solving Eq 180 approximately, or by using the 

standard approximations given in Ref. 1 . 

The above discussion has implications for random as well as step Inputs. 

Using the transient analog concept, the G.E.F. for any random input can be 

minimized by choosing x to minimize E-t, for the analogous transient input.  No 

practical random input yields a step for its transient analog, because, as 

shown in Eq l i|ij-, this would imply infinite input power.  However, if the input 

bandwidth significantly exceeds the system bandwidth, the analogous transient 
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input will have time constants much greater than those of the system^ and it 

will often be possible to approximate the actual transient analog signal by a 

step, as far as the choice of T is concerned, i.e., x = (t,^) . ,  for 

minimum G.E.F.  For input bandwidths less than the system bandwidth, this arti- 

fice will fail and the selection of x for minimum G.E.F. must be made on a 

trial-and-error basis.  Fig. 29 illustrates the generalized error function for 

a second-order system, 

H(s)  = ^ ^  (181) 
s2 + 2^s + 1 

having an input signal power spectrum <J>j„-p(ao) = 1 /(l + a^T^)  with zero noise 

and Ti = 1.  In this case the value of x at which the minim\im G.E.F. occurs is 

hardly affected by ^, but there does not appear to be any reason why this 

should generally be true.  (Note that although Ref. 5O contains several mis- 

prints, the data graphed in Fig. 29 have been checked and found to be correct.) 

Even for this simple case, the evaluation of the G.E.F. is fairly tedious, and 

in fact a digital computer was employed in Ref. JO.  Figure 29 (Fig. h    of 

Ref. 50) shows that the selectivity of the G.E.F. with respect to ^ is poor. 

For X = 1 .15, changing ^ from O.5 to 0.7 raises Et by only k  percent, approxi- 

mately.  E-t(x) is minimized by ^ = O.5 at x = 1 .15-  G.E.F. thus gives about the 

same validity and selectivity as the simpler e^ criterion, and appears unpromis- 

ing as a performance criterion.  Some calculations have been performed for other 

values of T-] which do not change this conclusion.  On p. 523 of Ref. 50, alternate 

forms of G.E.F. are suggested, including one with multiple delays: 

E(x, a, T^, X2)  = r(t) - ac(t + x^) - (l - a)c(t + xg)      (l82) 

where a is a constant, and T-J and Xg 
are time constants 

It is possible that such a G.E.F. employing multiple delays might achieve 

adequate selectivity. Some further investigation along these lines might be 

worthwhile, particularly if digital computing aids are available.  The problem 

of selecting the optimum x would then become less acute, because E(T) co\ild be 

swiftly calculated for a wide range of x. 
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Figure 29.  Generalized Error Function for Second-Order Unit N;merator System H(S) 
1 

with Input Power Spectrum, ^rv =  n)  with Ti   = 1 
^ 1   + T^cr^ 

32+2^8  +  1 



A Kote on the Evaluation of G.E.F. for an Integrated White Noise Input 

The transient analog of an integrated white noise input, <i> ^,^,(00) = 1/CD , is 

a step, R(S) = l/s.  As noted previously, for such inputs it is difficult to 

evaluate the G.E.F. using Eq 1 5^4-, because the integrals fail to converge.  In 

order to demonstrate how this disadvantage can be circumvented, the G.E.F. for 

a second-order unit numerator system forced by an integrated white noise input 

will now be evalixated. 

The system transfer fimction is 

H(s) = -. ^  (183) 
s^ + 2^3 + 1 

EvalTiatlng E-j^, for a unit step input, instead of the G.E.F. for the actual 

integrated white noise input. 

Et.(T)  =  /  t(t - T) - c(t)l^dt (184) (T)  =  /'°°[r(t - T) - c(t)]2dt 
Jo 

Adding and subtracting r(t)   to the kernel of the  integrand overcomes the  con- 

vergence difficulty. 

/•oo ., 
Ef(T)     =     /      rr(t)   -  c(t)  + r(t - T)   -  r(t)rdt (185) 

/•oo p 
=t(^)     =     I      [r(t)   -  c(t)  + r(t - T)   -  r(t)]^dt 

e2(t)   + 26(t)[r(t -  T)   -  r(t)]   +  [Xt -  T)   -  r(t)]'^ dt    (186) 
0 

/•oo /"oo 
:  I       e(t)[u(t -  T)   - u(t)]dt +   I       [u(t  -  T)   - u(t)]' 
Jo Jo 

(187) 

IE2 - 2   /   e(t)dt + T (188) 
Jo 

where        lE^    =     I       feft)!  dt 
/•oo 

I  Kt)] 
Jo 
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But -p— sin (pt + 1^) (189) 

where  p = 

■\|f = sin" 

'. E+(T)  = IE + T - 4^ + A (190) 

where  A 
2 ""^^ -^ [(^2 _ p2) sin p^ + 2^p cos pr] 

T=t^ 0 The choice of ^ for minimiim E^(T) requires that the equation [SE-t^(T)/St,J 

be solved.  This equation is transcendental and no analytic solution exists. 

The results shown in Fig. JO (Fig. k  of Ref. 28) were obtained by digital compu- 

tation.  The selectivity is little better than that of Fig. 29.  This result 

supports the general assertion made above that the G.E.F. (in its present form) 

has poor selectivity. 
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Figure JO.  Et(T) vs T for a Second-Order Unit Numerator System 

H(S) = —5  with a Unit Step Input 
s^ + 2^s + 1 
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CHAPTER V 

PEEQUENCY-WEIGHTED MEAN SQUARE ERROR 

Ruchkin (Ref. 52) has modified the mean square error performance measuxe to 

deal with the case when error power is more objectionahle in certain frequency 

bands than in others. This modification consists of the introduction of a 

weighting function into the expression for mean square error.  Instead of 

£ 
_ ^   ."00 

minimum e^ = minimum p- I  $gg(cjD)da) (l9l) 
'-co 

Ruchkin proposes the criterion 

■OD 

minimum EMS^ = minimum-^ I  $gg(a3)W(cD)dflu (l92) 
-oo 

where  W(ao)  is the frequency weighting function 

<5ge(oo)  is the error power spectrian 

Sections A and B of this chapter paraphrase Ruchkin's results, showing that the 

optimum free-form system is simply related to the Wiener system and establish- 

ing necessary restrictions upon the choice of W(CD) .  Section C extends Ruchkin's 

analysis to show that the criterion 

2 
minimum M-<^(i) --.g) —) 093) 

can also be expressed as a frequency-weighted mean square error.  Section D 

considers the optimization of fixed-form systems.  The effect of the choice of 

W(a)) upon the selectivity and validity of the EMSy criterion is also investi- 

gated in Sections B and C. 
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A. DERIVATION OF THE MINIMUM EMS^ SYSTEM 

It will now be demonstrated that the minlm-um EMSy system can he obtained in an 

analogous fashion to the Wiener system derivation if W(a)),  the frequency weighting 

in Eq 192^ has certain properties in common with the signal noise and input power 

spectra. In the most general case^ the input is the sum of correlated signal and 

noise. Hence, 

* rr *ss + *nn + *sn + * ns {■\3\) 

where    ^„„ = <i) (cJj) . signal spectrum ss     s s 

3> nn 

*, sn 

= ^nn^'^)^ noise spectrum 

= ^^^{i^)     = *ns^"J^^' ci-oss- 

spectnmi between signal and noise 

It is assumed that <E>  . *  , and ^-^-^ have the usual Hopf-Wiener factorization 
o o    Xi.il -*- -'- 

property, i.e., they are even rational functions of CD, and therefore, 

*(cn)  = *"'"(ja3)*"(j(JD)  =  !*"'"( jo)) (195) 

where <J>+(jaa)  has poles and zeros only in the 
left half-plane 

*"(j^)  ^s-S poles and zeros only in the 
right half-plane 

$-(jaD)  = <I>+(-jtD) 

W(flD) is also assumed to be Hopf-Wiener factorable.  Therefore, EMSy can be 

obtained by filtering the error signal with a system having the transfer fimction 

W*'(ja)) (as shown in Eig. 51 ) and evaluating e^. 

s(t) + 

n{t) 

n            r(t)         1 c(t) 
H(jw) 

4or 
eJ-'7 t 

Cd(t) 

Wtjw) 
yt) 

Figure Jl .  Block Diagram of System with Signal Plus Noise Input 
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From Fig. 31 it can be seen that the frequency-weighted mean square error is 

EMSw = ew 2«J_ 
00 

1 

00 J-co I. OD (196) 

Where    ¥(00)  = W+(jco)W"'"(-jcu) 

and  *   (a>)  = the spectrum of e^, the weighted error 

The error power spectrum expressed in terms of the signal, noise, and cross- 

spectra is the same as in the Wiener problem.  From Ref. 50, p. 239 

%Ja>)    = J"^ H ^'ss + iHr*, nn 

- [e-J-1 - H-]H<I>3, - p-n _ HJHXS (197) 

where T]    is the prediction time 

H    =    H(jm)   is a general system transfer 
fiinction 

H*(jaD)     =    H(-ja)) 

The system that minimizes the frequency-weighted mean square error can be 

found by using the fonnula for the Wiener optim\m linear system which is (as 

shown in Chapter l) 

V^"")  = $ + 
rr 

J<^ ss  ^nsi 

rr 
(198) 

-■ + 

If, in Eq 197, ^^^,  $^^, <I.^^, and*^^ are replaced with W*^^, W$^^, WcJ.^^, 

and W*Qg, respectively, then the left-hand side becomes W<Itc ( = *   )• With 

these substitutions, the problem of minimizing EMS , Eq 196, can be regarded as 

that of minimizing the mean square error using the modified input spectrum W* 

gi^en above.  Inserting these modified spectra into Eq 198 yields the optimum 

EMSy linear system, HE]\/[S^( JOD) , as 

HEM%(ja.)  = ^ 
rr 

(199) 
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which can be simplified to the result given by Ruchkin (Ref. 32) 

HEM%(J"^) 
eJ"^(<i,  +* )w-' 

ss   ns^ 

* rr 

(200) 

For W(GD) = 1 the optimiim EMSy system becomes the Wiener system.  Ruchkin does not 

consider the characteristics of the optimum EMS^ system and proceeds to discuss 

the necessary restrictions upon W(a)) that are implicit in Eq 200.  However;, it 

reqiiires only a brief digression to show that the optimum EMSy system is simply 

related to the Wiener system.  This will now be proved before continuing to dis- 

cuss the limitations on W(CD) .  It will be shown that the optimum EMSy system can 

be represented by two systems in parallel, one of which is the Wiener system for 

the given signal and noise.  For the time being it will be assumed that W(CD) has 

an equal niimber of zeros and poles.  The reasons for this assumption are made 

clear in Section B. 

Equation 200 can be written as 

Hi •EMSy 

[(A + B)W+]^ 

«>3,JW"^ 
(201) 

where A(jaD)  is that part of the partial fraction 

-p jODn/ ss 
expansion of e  'i  

+ * ns' 

left-half-plane poles 

with only 
rr 

B = B(ja))  is that part of the partial fraction 

JaT|/^s +*ns^ expansion of e"-     , 

right-half-plane poles 

Iwith only 
rr 

Equation 201 can be rewritten as 

^EMSy (jo.)  = 

[AW+]_^ + [BW+]^ 
(202) 

Since AW"^ has only left-half-plane terms, [AW"*"] + = AW"*" and Eq 202 becomes 
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'•l!l%(j'°' 
A   M. 
rr    rr" 

(205) 

and this can be written in terms of the Wiener system as 

H, ■EM% % + % (204) 

where   % = 

Hv 

* + rr 

[BW+J^ 

+TT + 
IT 

the Wiener system 

the system in parallel 
with Hy 

A and B are as in Eq 201 

Thus, Hg]y[o  can be expressed as two systems in parallel, one of which is simply 

the Wiener system. ' 

Exanrple of Optimum Frequency-Weighted Mean Square Error System 

As an example to  illustrate the foregoing, consider the following uncorre- 

lated signal and noise input spectra: 

ss 1 + 0^ 1 - s^ S=JCD 
(1 + s)(l - s) (205) 

nn 

rr     ss   nn 
1 - s^ 

+ N'^ 
1 + N^ - N^s^ 

1 - s2 

And since 9      is Hopf-Wiener factorable, 

*, +         VN^ + 1  + Ns 
r                  1   + s 

VN2 + 1   - Ns 
rr 1 - s 

(206) 
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H :EJ^ is given by Eq 200.  For T] = 0, 

* W ss 

* rr 
H- 

W* 
N(T + s)(A - s)J^ 

•EMS^ 
rr 

A + s 
1 + s 

W+ 

where A = VK^ + 

(207) 

Expanding * /^^.^ in partial fractions yields 

<I,^;    II(A + 1) Vl + s "^ A - sj (208) 

Therefore,   from Eq  201,  A(s)   and B(S)   are 

A(s) 
N(A + 1)(1   + s) 

^^^)     =    Il(A+ I)(A -  s) 

(209) 

Substituting Eq 206 and 209 into Eq 205 for HEMS^(S) yields 

HEMSW(S)  = 

r,   w;    1 
N{A + 1)(A - s) 

 1  ^ £+ 
N2(A + 1) (A + S) "^    jj/A + sU+ 

(210) 

where the first term is the Wiener system for the given signal and noise. 
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B.  RESTRICTIONS UPON THE CHOICE OF THE FREQUENCY WEIGHTING FUNCTION 

The restrictions upon the choice of the frequency weighting function will 

now be illustrated by continuing the above exajnple. Assume the following form 

for W+(s): 

I 

Inserting this into the second term of Eq 210 yields (using Eq 20^) 

f-.—a^t^^.-^__i      f  
[N(A + 1)(A - s)(l + ps)J^    N(A + 1)(A + 1)(1 + ps) 

^x(s)  =     N(A + s) /I +^      =    N(A+ s) /I +~^ ^^^^^ 
1 + s  \1 + ps/ 1 + s \1 + ps/ 

which can be simplified to 

Hx(s)  =  2  (213) 

N2(A + 1 )(A + i)(A + S)(1 + as) 
P 

Ruchkin states that W+(s) must have at least as many zeros as poles. A simple 

demonstration of this is obtained by letting a—»0 in Eq 211 and inspecting the 

final result.  From Eq 213, Hx(s) then becomes 

Hx(s)  =  LJLA  (214) 

N2(A + 1)(A +1)(A + s) 

This system has a finite gain at all frequencies and, since the noise part of 

the input has infinite bandwidth, the output power will be infinite; clearly an 

\mdesirable result.  It can be shown that if W^(s)   had been a ratio of second- 

order polynomials in s and the above procedure followed, then Hx(s) would have 

one more zero than pole.  Therefore, it would be physically unrealizable in 

addition to having infinite output power. Hence, the weighting function must 

have at least as many zeros as poles. To see that it may have more zeros than 

poles, allow p—»-0 in Hx(s), Eq 21^ which yields 
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Hx(s)  = — 5^ i  (2T5) 
N2(A + 1)(A + s)(l + as)     .     ■    ^ '^^ 

and therefore Hgj^ (s), Eq 2Qk,  becomes =W 

HEMSW(^) = -T-r '■ --P "^^^^^^-^  
^       N'^CA + 1)(A + s)   II^(A + 1)(A + s)(l + as) 

which could be combined to yield 

(216) 

HEM%(S)  = -^^ ^\   ~ "^ .,  (217) 
^ N2(A + 1)(A + S)(1 + as) ' 

C.  FREQUENCY WEIGHTING AS A MEANS OF REPRESENTING A GENERAL 
QUADRATIC CRITERION INVOLVING DERIVATIVES OF ERROR 

The criterion 

minimum (aQe2 + a2e2 + a2e2 + ••• ) (21 8) 

has been suggested (in a more general quadratic form) by Bellman (Ref. 55) and by 

Kalman and Koepcke (Ref. 56) for dynamic programming optimization techniques. 

This is easily interpreted as a frequency-weighted form 

EMSy = 2^ I  (of + olo^^ + a|a)^ + ••• )*gg(aD)dcD    '     (219) 
J-ooV,   J 

W(a>) 

where use has been made of the following relationships: 

12    =    i_ 
2jt 

Joo ^     rco 
<I'|^(oD)dcu =    2^  I      a:i^*gg(a))da3 

00 ^ J-CD 

J-OO J-CD 

(220) 
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The formiila for the optimum linear system, given "by Eq 204, still applies. 

An example of optimization with this criterion is given in the previous section 

(see Eq 215, 216, and 217) where it can be seen that the weighting function 

Eq 211 for p-^0 is 

therefore W((D)  = 1 + a?a?- (222) 

and therefore In this case 

WS^    = "^2 + a2i2 (223) 

The validity, selectivity, and ease of application of this criterion will be 

tested in Section D, where it will be applied to a second-order unit numerator 

system H(s) = —5 — , where t   is the variable parameter. 
s^ + 2^s +1 

D.  EIXED-FOBM (PHILLIPS-TYPE) OPTIMIZATION OF EMSy 

This section derives the optimum fixed-form (Phillips) system of the fonn 
1 

H(S) = —p: ;  for two different frequency weighting functions: 
s2 + 2^s + 1 ^   j'   6   B 

Wa(co)  = 

Wb(m)  = 

lim  1 + as 
P-^O I 1 + ps 

— (1 + a?o?) (221^) 

s2 + 2^,s + 1 ^ 

s^ + 2^2S + 1 
(225) 

The reason for the limiting process in Wg^(m) will become clear in the discussion. 

It will be shown that neither W^ nor W-^ yields a valid and selective criterion. 

As demonstrated In the previous section, Inserting the weighting function 

Wa(i^) into EMSy yields the simplest form of Bellman's performance measure: 

EMSw = e2 + a2l2        :- (226) 
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EMSy; (Eq 1 92) could be evaluated on an analog computer using the circuit in 

Fig. 31 where W+(ja)) is 

W"'"(ja))  = 1 + as (227) 

But even with operational amplifiers this is not strictly realizable, since any- 

differentiating circuit will fall off at very high frequencies. Therefore, the 

use of ■ 

1 + as Wt(ja)) 
1 + ps (228) 

where p is much smaller than any of the time constants of the error signal would 

be a more realistic and practical system.  It will be shown that the optimiza- 

tion of H(S) = —5 —  for an integrated white spectrum desired input 
s^ + 2^ s + 1 -^ 

signal (zero noise) is essentially independent of p if p is sufficiently small. 

The terms comprising *ge(a)) (Eq 1 97) are therefore 

■"ss 
J_ 
0^ 

(229) 

■^nn <J>   =0 ^ns    ^ 

H(s) 1 
s2 + 2^s + 1 

0 

and therefore the integrand of EMS^ becomes 

<6   W    = 
/       s + 2i;       \ /l   + as\ 

U2 + 2^s + ^|v + Psj 
2 

s=jaD 
(230) 

Evaluating EMS^j using the tables in Ref.   6   yields 

EMS^    = a^(2C   + p)   + {[2l^cL +  ^f  -  l^Co-lP + ^C^(2CP  + 1)P 
2p[(2^   + p)(2p^   +  1)   -  p] '] (231) 
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Dividing numerator and denominator ty P and simplifying, this becomes 

EMSy = 
^(1 + 2^p + p2)     ,   _ 

(252) 

For small p the last term in the numerator is negligible and Eq 252 becomes approx- 

imately 

EMSvj =  (^+iJr)(^2+ 1) W_^—2_ ^\ (233) 
% , \2p(l + 2^p + p'^)/ 

Expanding the last term in a Taylor series about p = 0 yields 

EMSw =  (^ +^)(a2 + 1) + 1^ {l - 2^p + p2(^^2 .   ^)   ...| (25^) 

Expanding Eq 23^ yields 

EMSw (^ +^)(a2 + 1) +1^ - ^a2 + a2(H2 . T )p (235) 

and for small P the frequency-weighted mean square error finally becomes 

1 + a2  a2 
EMSw = ^ + -T^ + 2p (236) 

The value of t,  that minimizes EMSy is found by differentiating Eq 236 with 

respect to ^. 

dEMS^ 1 + af^ 

and solving for ^ yields 

^  = 

^2 = 0 (237) 

(258) 

For this criterion to be valid (^ =0.7) requires an a of about one.  Eq 236 

is graphed in Fig. 32 for a = 1, p = 1. Fig. 32 shows that the selectivity of 
1 

this EMS^^ criterion is no better than that of £2 = ^ + 
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As an example of optimization with the second weighting function, Eq 225, 

W^(CD)  = 
+ 2^. s + 1 

s^ + 2^2^ + '' 
(259) 

S=JCD 

the same system, H(S), and input of the previous example will be used.  For 

^1 =1 and ^2 « '' ' ^^^^  weighting function will tend to accentuate the mid- 

frequency components of <i>gg which depend mainly on ^.  One would therefore 

expect the criterion to be highly selective for these values of ^i and ^g- 

Therefore, 

/   s + 2!;  \ /s2 + 2^is + 1\ 

\s2 + 2ts + 1/\s2 + 2toS + 1/ *ecW = 
(2l|0) 

S=JOD 

Using the table of Ref. 6,  EMS^ becomes 

(^2 + T)(^^2 + ^r) 
(21^1) 

This is plotted in Fig. 33 as a function of ^ for various values of ^, and 

^o-  In addition, plots of ITAE, ITE2, and IT2E2 for a step input to the same 

system are reproduced from Ref. 1 for selectivity comparisons.  The analytic 

forms of these performance measures are rational functions of ^ and therefore 

they have been plotted "Bode fashion," taking advantage of their asymptotic 

character (except for ITAE which contains transcendental terms).  It must be 

remembered though that only positive real values of t,  are considered in the 

"Bode plots." 

The e2 can be obtained from EMSy when ^-j = ^2 ^^*^ ^^ graphed in Fig. 33 as 

curve (T) .  The selectivity is poor.  The steepest possible asymptotes obtain- 

able using the weighting function of Eq 239 and the actual EMS^^ are shown as 

curve (2).  The selectivity is little better than that of the mean square error. 

In comparison, "good" selectivity is indicated by curves (2),   (^, and (^ for 

ITAE, IT2E2, and ITE2, respectively. 
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CHAPTER VI ' 

A NOTE ON COMBIEED AND CONSTRAINED CRITERIA, AM) CONCLUSIONS 

The term "combined criteria" is used to denote performance criteria that are 

functions of more than one dependent variable, e.g.. 

The generalized   . .   n r? ip    - ^z ^    ^\ ° „  ,.     minimum G.E.F. = f(e, TJ 
error function, 

Glover's criterion, minimum P.E. = minimum f(G, c, 5) 

Combined criteria can sometimes be expressed as frequency-weighted forms, e.g., 
           1      !• 00 

minimum eS + K€^  is equivalent to minimum ^ J_ W(aD)<l5gg(m)dGD, where W(ai) is a 

frequency-weighting factor incorporating a constant K  which expresses the rela- 

tive importance of error and time rate of change of error quantities as measures 

of the dynamic performance of a given system. 

In order to put combined criteria into concrete usable forms, the linking 

constants or equivalent frequency-weighting functions must be chosen to reflect 

system requirements.  The present generalized study can offer little advice on 

the choice of these weighting parameters; in Chapters III, IV, and V we have 

attempted to illustrate the consequences that follow once certain choices of 

these parameters are made.  The reader must decide for himself whether these 

choices are appropriate for the particular system that he is studying. 

Combined criteria are frequently expressed In the form "minimum f(e)" with a 

constraint on some other parameter, such as bandwidth or peak power.  Such con- 

strained criteria have been extensively studied by Westcott (Ref. 11 ), Newton, 

Gould, and Kaiser (Ref. 6), Chang (Ref. 10), Hung (Ref. 9), and others. Westcott 

noted that constrained criteria could be divided into two classes: 

Class 1 : A condition is imposed upon the system transfer 
function either at a particular frequency or as 
a trend with frequency. 

Class 2:  The constraint is expressible as an integral 
over the range of the function being varied and 
is required to have a constant value or to be 
less than some specified value, e.g., limiting 
of total energy. 

Reference 11 and most subsequent analyses of random input performance criteria 
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deal with Class 2 constraints.  The difficulty in selecting reasonable values of 

the weighting parameters to assess combined criteria becomes aggravated when 

constraints are introduced. Mathematical procedures required to obtain the 

optimum system have been detailed in Ref. 6 and 10.  In the present report only 

a brief note will be given to indicate the techniques that are available; details 

of the computational procedures can be found in the references cited. 

Newiion, Gould, and Kaiser consider constrained criteria of the form 

"minimiim €^," with a constraint upon the rms input to a supposedly nonlinear 

component of the system.  The object is to optimize the system subject to the 

restriction that the nonlinear element must operate in the linear (unsaturated) 

part of its range.  The analytical procedure adopted consists of the replacement 

of the nonlinear element by a substitute linear component having identical char- 

acteristics to those of the actual component over the linear part of its operating 

range.  The rms input to the substituted linear element is then constrained to be 

less than that maximum input amplitude for which the actual system remains linear. 

It is shown in Ref. 6 that this procedure is equivalent to minimizing the proba- 

bility of saturation, provided that that probability is small.  Lagrange 

multipliers are used to incorporate the constraint into the minimization procedure. 

Related techniques are used in Ref. 6,  p. 215, "to minimize mean square error 

subject to a constraint on bandwidth, although the term "bandwidth" is used only 

in a rather general sense as "the frequency over which the system will have an 

output approximately equal to the desired output." Such a definition is too loose 

to be incorporated directly into standard variational calculus or other minimiza- 

tion procedures, and the bandwidth is therefore calibrated in terms of the mean 

sq-uare noise transmitted by a specified standard filter.  The mean square error 

is then mini mi zed with this "calibrated constraint" being taken in account by 

means of Lagrange multipliers. Ref. 6 presents examples of this optimization 

procedure for detennlnistic inputs only; however, as noted in Ref. 9^ the modifi- 

cations required to deal with stationary random inputs are easily made.  In 

Ref. 9 tJie bandwidth of the input to a specified component is constrained to 

avoid exciting undesirable high-frequency modes associated with that component. 

In flight control system design this technique could be useful in minimizing mean 

sqxjare error without exciting aeroelastic or autopilot modes. 
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The computational labor Involved in the analytic minimization of constrained 

performance measures is often fonnidahle. This point is noted on p. 2ij-6 of 

Ref. G,  where it is suggested that the analytic minimization procedure should be 

used mainly as a guide for trial-and-error optimization procedures, "pilot" 

analytic minimization using simplified systems and inputs being made to approxi- 

mately determine the lowest attainable value of the particular performance 

measure being considered. Some progress toward shortening this process has been 

made by Chang.  His "root sqixare locus" method (Ref. 10) goes some way toward 

combining the precision of analytical optimization techniques with the ease of 

iteration afforded by graphical procedures. 
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CONCLUSIONS 

1. Performance criteria for linear constant-coefficient systems with random 

inputs have been investigated, with particular reference to flight control 

systems. The application of performance measures has been facilitated by substi- 

tuting for the actiial flight control system an "equivalent" low-order linearized 

system having similar dynamic characteristics.  This equivalent system was con- 

structed by dividing the actual system transfer function into regions of interest 

defined by 

(a)    |G(ja))| » ^,  over which 

(b)   |G(ja))| « ^,  over which 

1 + G(jm) 

l_G(jm) 

1 

|G(ja)) 

(c)    |G(JCD)| = 1 

The form of G(ja^) i:j— ~ / • \\   i^ 'tt^G last region defines the dominant modes of the 

closed-loop system response, and can usually be closely approximated by a system 

of first, second, or third order. 

2. For stationary random inputs, many criteria are equivalent to minimum e2. 

This criterion is relatively easy to apply using "pencil and paper" techniques 

if use is made of the equivalent system concept.  It possesses a compatible 

deterministic criterion (minimum J e'^dt); hence, operations upon random quanti- 

ties required to compute e^ can be replaced by operations upon their more easily 

visualized transient analogs.  Its principal disadvantages are that it yields 

rather lightly damped systems and is unselective, i.e., the e2 of the optimum 

system is only slightly less than that of a wide range of off-optimum systems. 

5-  No criterion has been found that has the advantages of minimimi e^ with- 

out comparable disadvantages. 

k.    Of those criteria that did not reduce to minimum e2, the following 

deserve further investigation: 

122 



a. Exceedance criteria (for stationary Gaussian inputs): 
Exceedances are relatively easy to calculate, but, in 
most of the examples studied, gave very heavily damped 
systems.  The implications on dynamic performance of 
the growing use of exceedances as fatigue criteria 
requires consideration. 

b. Frequency-weighted criteria:  These may be suitable 
where the frequency-weighting can be specified so that 
it directly reflects performance requirements.  Further 
study is required to determine whether this is feasible 
for a class of flight control systems sufficiently 
broad to be of general interest. 

5- Zaborszky and Diesel's probabilistic square error criterion is suitable 

for nonstationary situations where the weighting function describing the varia- 

tion of error importance with time can be specified. 

6. A wide variety of criteria have been surveyed and many new results and 

techniques have been produced.  These include: 

a. Proof that for stationary inputs Murphy and Hold's 
time-weighted square error criterion reduces to 
minimum e^, 

b. Simplified procedures for evaluating the probabilistic 
square error measure. 

c. Generalized definition of the concept of compatible 
criteria and exploitation of this concept to obtain 
transient analogs for both uncorrelated and corre- 
lated signal and noise. 

d. A technique for applying Glover's amplitude-weighted 
criterion to fixed-form systems. 
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